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Improved active control of a
functionally graded material beam
with piezoelectric patches

I Bruant and L Proslier

Abstract

In this paper, the active vibration control tools are implemented for the vibration control of functionally graded material

(FGM) beam with piezoelectric actuators and sensors. The properties of FGM are functionally graded in the thickness

direction according to the volume fraction power law distribution. An analytical formulation, based on an efficient

trigonometric shear deformation theory, is used to obtain a state space equation. The main steps to set up active

control of FGM vibrations are considered in this work. The actuators’ and sensors’ locations are defined from two

optimization problems using controllability and observability gramians. The linear quadratic regulator (LQR) control law,

including a state observer is computed. Numerical examples show the influence of the volume fraction index on the

observability and controllability properties of the system. The LQR leads to efficient active damping for several kinds of

excitations. The study of the uncertainty in the volume fraction index shows the robustness of the control method, and

also the possible induced defects.
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1. Introduction

A new class of composite materials known as ‘‘func-
tionally graded materials’’ (FGMs), first developed by
Japanese Scientists in the late 1980s, has attracted much
attention these last years. The most common use of this
kind of materials is in a mixture of metallic and ceramic
characterized by the smooth and continuous change of
the mechanical properties from one side to the other
side from the thickness. In this way, the ceramic com-
ponent of FGM is able to withstand a high-temperature
environment due to its better thermal resistance while
the metal component provides stronger mechanical per-
formance. Due to these superior thermo-mechanical
properties, FGMs have found extensive applications
in, for example, reactor vessels, fusion energy devices,
aircrafts, space vehicles, and other engineering struc-
tures, as well as others in the biomedical and defense
industries. In this way, much research has been pub-
lished about vibration and dynamic response of FGM
structures like beams and plates. The reader can be
referred to Aydogdu and Taskin (2006), Kapuria
et al. (2007), Li (2008), Xiang and Yang (2008),

Simsek and Kocaturk (2009), Sina et al. (2009),
Atmane et al. (2010), Simsek (2010), Alshorbagy
(2011), Doroushi et al. (2011), Giunta et al. (2011),
Yao and Shi (2011), Aminbaghai et al. (2012), Jha
et al. (2013).

Additionally, in recent years, a great number of
research results have been produced about the active
vibration control of flexible structures using piezoelec-
tric actuators and sensors. The application of piezoelec-
tric materials has indeed become popular because of
their low weight, high strength and easy implementa-
tion. The considered systems are usually homogeneous
or composite structures (Benjeddou, 2000; Bruant
et al., 2008). Less papers deal with the active control
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of FGMs. Gharib et al. (2008) focused on active vibra-
tion control of FGM beams, He et al. (2001), Liew et al.
(2003), Kargarnovin et al. (2007), Mirzaeifar et al.
(2008), Fakhari and Ohadi (2010), Yiqi and Yiming
(2010) and Fu et al. (2013) considered the active control
of FGM plates, and Sheng and Wang (2009), Zheng
et al. (2009) and Narayanan and Balamurugan (2010)
that of the shells.

To simulate the active vibration control of a bending
FGM structure, several parameters have to be
considered:

1. Concerning the modeling of the FGMs, several dis-
placement field approximations across the thickness
can be considered, depending on the dimensions of
the structure. For example, in the case of FGM
beams, classical theory, first-order and different
higher-order shear deformation beam theories can
be used (Simsek, 2010).
Elsewhere, different constitutive materials models
exist. The most usual is the power law introduced
by Xakashima (Aydogdu and Taskin, 2006; Simsek
and Kocaturk, 2009) but other models have been
developed, such as the exponential law (Aydogdu
and Taskin, 2006), or the modified rule of mixtures
proposed by Kapuria et al. (2007). In some works,
the effective material properties depend continuously
on several geometric variables (Xiang and Yang,
2008; Alshorbagy, 2011; Giunta et al., 2011;
Aminbaghai et al., 2012).
Finally, depending on the considered structure, ana-
lytical development or finite element modeling will
be considered.

2. Concerning the active control set up, two criteria
have to be defined:
. The locations of piezoelectric patches which have

a major influence on the performance of the con-
trol system. The study of controllability and
observability gramians gives information on the
best and worst positions. In addition, in the case
of classical elastic materials, sensors and actuators
are made with two piezoelectric patches bonded
on the top and bottom of the structure. For sym-
metric structures, this kind of concept is interest-
ing because it induces a possible decoupling
between transverse and longitudinal vibrations,
and the action of actuators is also more efficient.
Actually, in most papers dealing with active con-
trol of FGMs, the actuators and sensors are col-
located, with actuators on one face and sensors on
the other face (He et al., 2001; Kargarnovin et al.,
2007; Sheng and Wang, 2009; Yiqi and Yiming,
2010; Fu et al., 2013). Nevertheless, as the top of
the FGM should be in a high temperature envir-
onment, it is more realistic that a huge

piezoelectric patch cannot be located on this
face, but only on the bottom face.

. The control law, the most used of which for FGM
is the constant gain velocity feedback algorithm
(He et al., 2001; Liew et al., 2003; Sheng and
Wang, 2009; Zheng et al., 2009; Yiqi and
Yiming, 2010; Fu et al., 2013). Nevertheless, in
many works about active control of classical
structures, linear quadratic regulators are applied
(Kondoh et al., 1990; Gaudiller and Der
Hagopian, 1996; Preumont, 1999; Bruant et al.,
2001; Ang and Wang, 2002; Narayanan and
Balamurugan, 2003; Kusculuoglu and Royston,
2005; Bruant et al., 2008; Chomette et al., 2008;
Nestorovic and Trajkov, 2010). In Balamurugan
and Narayanan (2001), several control laws are
compared for active control of plates, and the
LQR optimal control schemes are more effective
than classical controls. The use of these kinds of
control laws requires a state space formulation
obtained by a structural modal analysis.
Usually, as sensors can only capture a few state
variables, a state observer is essential for real-time
application, like a Kalman Filter.

To the best of authors’ knowledge, no previous work
considers all these points for the active control of
FGM. Contrary to other investigations, the objectives
of this work are to present the main steps for the set up
of the active control, and also to show different char-
acteristics related to the properties of FGM. Here, the
active control is developed for FGM beams, since this
kind of structure plays an important role in structural
applications in aerospace and automotive industries
and machine elements (Giunta et al., 2011;
Aminbaghai et al., 2012). Moreover, the choice of a
simple structure like a beam allows us to develop an
analytical model.

In Section 2, the active transversal vibration control
of a supported FGM beam, equipped with piezoelectric
patches located only on its bottom face, is presented.
An analytical model of the beam and piezoelectric
devices, using an effective trigonometric shear deform-
ation theory, is developed. Section 3 deals with the
active control system. First, the actuators and sensors
location are defined from an optimization procedure in
order to accurately sense and control the first eigen-
modes. Then, an LQR algorithm is computed. As this
control law needs knowledge of the state of the struc-
ture, which is not complete since only the output sen-
sors voltages are observed, a state observer is added to
the system control. In Section 4, several numerical tests
are presented. In the first simulations, the control vibra-
tion suppression is performed for several excitations to
show the effectiveness of the control algorithm for the



FGM beams, even if the actuators are made with only
one patch. Then, a sensitivity study on the parameter k
(the volume fraction index involved in the FGM con-
stitutive equations) is presented and shows the robust-
ness of the active control law, but also possible
consequences related to an error in k.

2. Theory and formulations

2.1. Functionally graded beam equipped with
piezoelectric patches

2.1.1. FGM constitutive equations. A functionally graded
simply supported beam of length L, width b, thick-
ness h, with co-ordinate system ðO, x, y, zÞ, having the
origin O is shown in Figure 1. The bottom surface of
the FGM is a metal layer and the top surface is a cer-
amic layer.

Ec, �c, Em and �m denote respectively values of elas-
ticity modulus and mass density of the top and bottom
of the beam. It is assumed that the Young’s modulus E
and mass density � vary continuously in the thickness
direction (z-axis) according to the power law form:

Eðz, kÞ ¼ ðEc � EmÞ gðzÞ þ Em ð1Þ

�ðz, kÞ ¼ ð�c � �mÞ gðzÞ þ �m ð2Þ

where gðzÞ ¼ ð1=2þ z=hÞk is the volume fraction and k
is the volume fraction index. It represents the material
variation profile through the beam thickness
(0 � k � 1). Figure 2 shows the variation of Eðz, kÞ
through the thickness of an FGM beam, for several
values of k (the variation of � is similar). The
Poisson’s ratio is considered constant.

The constitutive equation of the FGM beam is given
by the generalized Hooke’s law:

r ¼ Ce ð3Þ

where r, e and C are, respectively, the stress vector, the
strain vector and the usual constitutive matrix for iso-
tropic structure. Its coefficients are functions of z,
from Eðz, kÞ.

2.1.2. Piezoelectric constitutive equation. The beam is
equipped with thin piezoelectric patches located on its
bottom face. They are used as Na actuators and Ns

sensors. In order to simplify, it is assumed that the
length and thickness of all patches are fixed to Lp and
hp, and the width of piezoelectric is the same as the
beam’s one. The constitutive relationships describing
the electrical and mechanical interactions for piezoelec-
tric materials are given as:

r ¼ ce� eTE ð4Þ

D ¼ eeþ �E ð5Þ

Here D is the electric displacement vector,
E ¼ �gradð�Þ is the electric field vector, � is the electric
potential, c is the elasticity matrix, e is the piezoelectric
constants matrix and � is the dielectrical permittivity
coefficient matrix. Equation (4) is usually used to
model piezoelectric actuators effects on the dynamic
of the beam, while equation (5) yields the output equa-
tion of sensors (Preumont, 1999).

In order to apply and sense electric potential on
piezoelectric actuators and sensors, each patch is cov-
ered by electrodes at z ¼ � h

2 and z ¼ � h
2� hp. Given

their small thickness, we can assume that the electric
field is constant and only the component Ez is nonzero.
It induces that:

Ez ¼ �
��

hp
ð6Þ

where �� is the potential difference across the piezo-
electric. Finally, the electric displacement satisfies the
electrostatic equilibrium equation:

divD ¼ 0 ð7Þ

FGM BEAM x

z

Piezoelectric patches

Figure 1. A FGM beam equipped with piezoelectric devices.



which reduces to

dDz

dz
¼ 0 ð8Þ

2.2. Strain-displacement relations

2.2.1. Displacement field approximation. Several deform-
ation beam theories can be used to model FGM
beams (Simsek, 2010). Based on the higher-order
shear deformation theory, the axial displacement ux,
and the transverse displacement uz of any point of the
beam, are given as:

uxðx, z, tÞ ¼ uðx, tÞ � zv0ðx, tÞ þ f ðzÞ�ðxÞ

uzðx, z, tÞ ¼ vðx, tÞ
ð9Þ

where u, v and � are respectively the axial, the trans-
verse displacement and transverse shear strain of any
point on the neutral axis. � is given by:

�ðxÞ ¼ �ðx, tÞ þ v0ðx, tÞ ð10Þ

�ðx, tÞ is the total bending rotation of the cross-sections
at any point on the neutral axis. t denotes time and 0

indicates the first derivative with respect to x.
Different beam theories can be obtained by choosing

f(z) as follows:

. Euler Bernoulli theory (or classical beam theory):
f ðzÞ ¼ 0;

. Timoshenko theory (or first order shear deformation
beam theory): f ðzÞ ¼ z;

. Several higher-order beam theories exist, which con-
sider the warping of the cross-sections and satisfy the
zero transverse shear stress condition of the upper
and lower fibers of the cross-section without a shear
correction factor. One of them is the trigonometric
shear deformation beam theory where f ðzÞ ¼ h

� sinð
�z
h Þ

(Polit and Touratier, 2000). It is interesting to note
that since the sine function has an infinite radius
convergence, equation (9) can be written for the in-
plane displacement as:

ux ¼ u� zv0 þ z� �
�2

3!h2
z3� þ

�4

5!h4
z5� þ � � � ð11Þ
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Figure 2. Variation of the Young modulus through the thickness.



If � ¼ 0 we obtain the Euler-beam kinematics, if we
develop the first order sine function, we obtain the
Timoshenko theory, and if we develop the sine func-
tion to the third-order only, we then obtain the same
order kinematics as in Simsek (2010).

2.2.2. Equations of motion. In order to find the mechan-
ical governing equations of FGM beam, the start point
is the 3D variational principle given by the problem
find u such that 8u�

Z
!

�u� � €udv¼�

Z
!

�ðu�ÞTrdvþ

Z
!

u� � fdvþ

Z
@!F

u� �FdS

ð12Þ

where ! represents the FGM beam with piezoelectric
patches. f and F are the prescribed body and surface
forces applied on @!F. In this study they will be
restricted to the z-component: fz and Fz. Furthermore,
u� is the admissible virtual displacement and �ðu�Þ is the
virtual strain.

By substituting the FGM and piezoelectric stress-
strain relations into (12), the following constitutive
equations can be obtained:

Nx
�My

My

2
4

3
5 ¼ K

u0

v00

�0

2
4

3
5þXNa

i¼1

he31i
he31ð f ðzÞ � zÞi
�he31f i

2
4

3
5 ð��aÞi

hp

ð13Þ

Tz ¼ hGf
02ið� þ v 0Þ ð14Þ

where K equals

hE,1i hE,f i�hE,zi hE,f i

hE,f i�hE,zi hE,f2iþhE,z2i�2hE,fzi hE,f2i�hE,fzi

hE,f i hE,f2i�hE,fzi hE,f2i

2
64

3
75

ð15Þ

and ð��aÞi is the potential field for the ith actuator.
Three equilibrium equations are also deduced:

hm, 1i €uþ ðhm, f i � hm, ziÞ €v 0 þ hm, f i €� ¼ N0x ð16Þ

hm, 1i €vþðhm,zi� hm, f iÞ €u0 þ ðhm,zf i� hm, f2iÞ €� 0 þ � � �

þ ð2hm,zf i� hm,z2i� hm, f2iÞ €v00 ¼ � �M00yþT0zþh fzi

ð17Þ

hm, f i €uþ hm, f 2i €� þ ðhm, f 2i � hm, zf iÞ €v0 ¼M0y � Tz

ð18Þ

All coefficients h�i are detailed in Appendix A.

To complete these equations, boundary conditions
must be added. In this study, we consider simply sup-
ported boundary conditions, given by:

Nxðx ¼ 0Þ ¼ �Myðx ¼ 0Þ ¼Myðx ¼ 0Þ ¼ 0

Nxðx ¼ LÞ ¼ �Myðx ¼ LÞ ¼Myðx ¼ LÞ ¼ 0
ð19Þ

2.2.3. Sensors equation. In the case of the sensors output
equation, there exist two basic approaches for calculat-
ing the piezoelectric sensor voltage (Jha and Inman,
2003). One approach is to consider an open-circuit con-
figuration in which the total surface charge is assumed
to be zero and the sensor voltage is obtained by inte-
grating the electric field over the sensor. Another
approach is to consider a closed-circuit configuration
in which the electric field becomes zero and the total
charge on the sensor is obtained by integrating the elec-
tric displacement over the sensor area. Here, the first
approach is followed.

From (8) we get for the ith sensor (Kargarnovin
et al., 2007):

1

2

Z
S

Dzðz ¼ �h=2Þ þDzðz ¼ �h=2� hpÞdxdy ¼ 0 ð20Þ

where S is the effective electrode surface, assumed equal
to S ¼ Lp � l. By substituting the electric displacement
by the relation (5), the electric voltage of the ith sensor,
located at ci, is given by:

ð��sÞi ¼
hpe31

Lp�33

n
uðciþLpÞ� uðciÞþ

1

2
ð f ð�h=2� hpÞ

þ f ð�hpÞþ ðhþ hpÞÞðv
0ðciþLpÞ� v0ðciÞÞ

þ
1

2
ð f ð�h=2� hpÞþ f ð�hpÞÞð�ðciþLpÞ� �ðciÞÞ

o
ð21Þ

Again, as the piezoelectric sensor is only on the bottom
face of the beam, there is no possible decoupling
between u and v.

In order to set up a control law, damping the vibra-
tions caused by external disturbances or by initial con-
ditions, a state space model is developed in the next
section and a linear quadratic regulator (LQR)
method, including a state observer is used.

3. The control system

3.1. Modal analysis

The application of the active control methods in a
dynamic structural problem requires the use of a state



space model. To obtain this kind of equation, the solu-
tion vector U is decomposed into a normalized orthog-
onal structural modal basis. Eigenmodes and
eigenfrequencies are obtained by solving the free vibra-
tion problem where:

. the external load vectors and electric potential actu-
ators are taken as zero:

f ¼ F ¼ ð��aÞi ¼ 0 8i ¼ 1, . . . ,Na ð22Þ

. the time dependent displacement can be expressed as
follows:

U ¼ ei!t �U ð23Þ

where ! is the natural frequency of the beam.

To solve free vibration equations (13), (16), (17),
(18), (22) and (23), that satisfy the boundary conditions
(19), we suppose that (Reddy, 2004):

p ¼ 1, 2, . . .

uðxÞ ¼ u0 cos
p�x

L
ð24Þ

vðxÞ ¼ v0 sin
p�x

L
ð25Þ

�ðxÞ ¼ �0 cos
p�x

L
ð26Þ

It leads to the following eigenvalue problem: find
ð!,U0 ¼ ðu0, v0, �0Þ

T
Þ which satisfy:

!2M0U0 ¼ K0U0 ð27Þ

M0 and K0 are respectively the inertia and stiff-
ness matrix. They depend on p and are given
in Appendix B. The solution of (27) gives the N first
eigenfrequencies !1 5!2 5 � � � 5!N, and the eigen-
modes are Un which components are defined by:
n ¼ 1, . . . ,N

unðxÞ ¼ ðu0Þn cos
pn�x

L
ð28Þ

vnðxÞ ¼ ðv0Þn sin
pn�x

L
ð29Þ

�nðxÞ ¼ ð�0Þn cos
pn�x

L
ð30Þ

pn is the value of the associated coefficient p. The eigen-
modes are normalized with respect to the mass.

In this way, assuming that the system response is
governed by the N first eigenmodes, the displacement

can be expressed by:

U ¼
XN
n¼1

�nðtÞUn ð31Þ

Substituting this equation into the equations of the
problem and (12), and using the orthogonal-
ity properties of modes lead to the following
equations:

€�nþ2	!n _�nþ!
2
n�n¼ l ðUnÞþ

XNa

i¼1

bnið��aÞi 8n¼ 1, . . . ,N

ð32Þ

where

l ðUnÞ ¼

Z L

0

h fziv
0
ndx ð33Þ

bni ¼ �
1

hp

Z aiþLp

ai

un
0ðxÞhe31Si þ �

0
nðxÞhe31f i

þ v00nðxÞhe31ð f ðzÞ � zÞidx ð34Þ

and ai is the location of the ith actuator. A term of
modal viscous damping has been added to take into
account a small amount of natural damping without
coupling the modes. 	 is the damping ratio.

If the actuators are made with two patches located
symmetrically at the top and bottom of the beam, it is
possible to make un disappear in (34) imposing the two
patches in phase opposition. Unfortunately, in the case
of FGM structure, as the piezoelectric actuators are
only on the bottom face of the beam, there is no pos-
sible decoupling between axial and transversal
displacement.

Additionally, from (21), the ith sensor’s output equa-
tion becomes:

ð��sÞi ¼
XN
n¼1

�nðtÞdin ð35Þ

where

din ¼
hpe31
Lp�33

n
unðci þ LpÞ � unðciÞ þ

1

2
ð f ð�h=2� hpÞ

þ f ð�hpÞ þ ðhþ hpÞÞðv
0
nðci þ LpÞ � v0nðciÞÞ

þ
1

2
ð f ð�h=2� hpÞ þ f ð�hpÞÞð�nðci þ LpÞ � �nðciÞÞ

o
ð36Þ



These equations can be written in a state space form.
Using the state vector (size 2N)

x ¼ f!n�n, _�ng
T ð37Þ

yields

_x ¼ Axþ B"/a þG ð38Þ

xðt ¼ 0Þ ¼ x0, y ¼ "/ s ¼ Cx ð39Þ

A2N,2N, B2N,Na
, CNs,2N and G2N,1 are the state, control,

output and load matrices, given by:

A ¼
0 x

�x �2	x

� �
B ¼ 0 b

� �T
ð40Þ

C ¼ dx�1 0
� �

G ¼
0

g

� �
ð41Þ

x0 is the initial conditions vector, gn ¼ l ðUnÞ, and x is
the N�N diagonal matrix with !nn ¼ !n.

3.2. Actuators and sensors location

The actuators and sensors location have a major
influence on the performance of the control system.
Misplaced sensors and actuators lead to problems
such as the lack of observability or controllability.
For this reason, many studies have been published
on this subject and different cost functions have
been used to find the optimal locations of these
active elements. In this paper, the optimal location
of sensors and actuators are computed independently.
The modified optimization criteria developed in
Bruant et al. (2010) are used. They ensure good
observability and good controllability of each mode,
considering them with homogeneity, and not globally
as it is usually the case. We briefly give the method in
the two next subsections.

3.2.1. Actuators location. The objective here is to find
actuators locations that minimize the control energy
required to bring the modal system to a desired state
xT after some time T:

J ¼ min
"/a

Z T

0

f"/T
a"/agdt ð42Þ

The optimal solution gives the following optimal
control energy:

J ¼ ðeA
T

x0 � xTÞ
T
ðWðTÞÞ�1ðeA

T

x0 � xTÞ ð43Þ

where WðTÞ is the controllability gramian matrix
defined by:

WðTÞ ¼

Z T

0

eAtBBTeA
Tt dt ð44Þ

Minimizing J with respect to the actuators locations
consists in minimizing ðWðTÞÞ�1 or maximizing a
measure of the controllability gramian matrix (Hac
and Liu, 1993). Instead of using WðTÞ, a steady
state Wc can be considered to eliminate the depend-
ency of the solution T. Wc tends to a diagonal
form with

ðWcÞnn ¼ ðWcÞnþN,nþN ¼
1

4	!n

XNa

j¼1

b2nj ð45Þ

ðWcÞnn equals the energy transmitted from the actu-
ators to the structure for the nth eigenmode. Hence,
if the eigenvalue ðWcÞnn is small, the nth eigenmode is
difficult to control: there is no controllability for the
system.

The usual criteria take into account globally the
eigenmode. Instead of maximizing a global norm of
Wc which means minimizing the electrical energy, the
optimization problem considered here is: to find the
actuators’ location which maximizes

JA ¼ min
n¼1,N

ðWcða1, . . . , aNa
ÞÞnn

maxa1,...,aNa
ðWcða1, . . . , aNa

ÞÞnn

¼ min
n¼1,N

PNa

j¼1 b
2
nj

maxa1,...,aNa

PNa

j¼1 b
2
nj

ð46Þ

and,

8n ¼ 1, . . . ,N 0 �
ðWcða1, . . . , aNa

ÞÞii

maxa1,...,aNa
ðWcða1, . . . , aNa

ÞÞii
� 1

The greatest advantage of this criterion is that all
modes are studied with the same range. Furthermore,
the expression inside (46) has a physical meaning: it is
the mechanical energy transmitted for the nth mode
divided by the maximal mechanical energy that could
be received.

3.2.2. Sensors’ location. The optimal location of sensors
is determined in the same way as the optimal location
of actuators. It consists in maximizing the gramian
observability matrix defined by:

Wo ¼

Z 1
0

eA
TtCTCeAt dt ð47Þ



which is diagonal dominant:

ðWoÞnn ¼ ðWoÞnþN,nþN ¼
1

4	!n

XNs

j¼1

c2jn n¼ 1, . . . ,N ð48Þ

To have convenient information about the N first
eigenmodes, and to insure homogeneity between each
term ðWoÞii, the optimization problem considered here
is: to find the sensors locations c1, . . . , cNs

which
maximize

JS ¼ min
n¼1,N

ðWoðc1, . . . , cNs
ÞÞnn

maxc1,...,cNs
ðWoðc1, . . . , cNs

ÞÞnn

¼ min
n¼1,N

PNs

j¼1 c
2
jn

maxc1,...,cNs

PNs

j¼1 c
2
jn

ð49Þ

with 8n¼ 1, . . . ,N 0�
ðWoðc1, . . . ,cNs

ÞÞnn

maxc1,...,cNs
ðWoðc1, . . . ,cNs

ÞÞnn
� 1

maxc1,...,cNs
ðWoðc1, . . . , cNs

ÞÞnn represents the maximal
output energy which could be measured for the nth
mode by the sensors.

3.2.3. Application to the simply supported FGM beam. In this
study, the criteria (46) and (49) become:

JA¼ min
n¼1,N

PNs

j¼1 cos pn�
L ðajþLpÞ

� �
�cos pn�

L aj
� �� �2

maxa1,...,aNs

PNs

j¼1 cos pn�
L ðajþLpÞ

� �
�cos pn�

L aj
� �� �2
ð50Þ

JS¼ min
n¼1,N

PNs

j¼1 cos pn�
L ðcjþLpÞ

� �
�cos pn�

L cj
� �� �2

maxc1,...,cNs

PNs

j¼1 cos pn�
L ðcjþLpÞ

� �
�cos pn�

L cj
� �� �2
ð51Þ

Normalizing each diagonal term of gramian matrix,
these two criteria are independent on k and h

L, and
finally, are similar for all kinematics. Moreover, in the
case where all patches have the same dimensions and
Na ¼ Ns, actuators and sensors have the same optimal
locations.

3.3. Control law and observer

In order to actively control vibrations, rather than what
is done in most papers about FGM vibrations, the effi-
cient linear quadratic regulator is used (Kailath, 1980).
Assuming that the state equation is controllable, the
control law may be written as:

"/a ¼ �Kx ð52Þ

which minimizes a cost function given by:

J� ¼
1

2

Z 1
0

ðxTQxþ "/T
aR"/aÞdt ð53Þ

R is a positive matrix and Q is a positive semidefinite
matrix. The optimal solution is

K ¼ R�1BTP ð54Þ

where P satisfies the Riccati equation:

ATPþ PA� PBR�1BTPþQ ¼ 0 ð55Þ

The choice of Q and R is not easy (Ang and Wang,
2002). In the following applications, Q is chosen so
that xTQx represents the mechanical energy. The
components of R are chosen using the following
statement: the maximal values of "/a are less than
the maximal admissible values of the piezoelectric
materials.

It is important to note that in order to be imple-
mented, the optimal state control law needs know-
ledge of the state vector x. This knowledge is not
complete since only the output voltages in y are
observed. Assuming that the state system verifies
the observability criteria, an estimation x̂ is computed
using a Luenberger observer (Kailath, 1980) which
is thus:

d

dt
x̂ ¼ Ax̂þ B"/ a þ Lðy� CbxÞ þG ð56Þ

where L is the observance gain matrix. It is chosen so
that the real part of the eigenvalues of A� LC are
negative. Consequently, the control law applied to the
actuators becomes:

"/ a ¼ �Kx̂ ð57Þ

4. Numerical examples

In the applications, the FGM beam is equipped with
actuator and sensor respectively made of PZT5A and
PVDF piezoelectric patch. They are assumed to be per-
fectly bonded to the bottom surface of the beam, and
their thickness is assumed to be small compared to the
beam thickness. Then, the rigidity and mass of the
patches are neglected in the mechanical problem.
The geometrical and mechanical properties of the
system are detailed in Tables 1–3. In all simulations,
the first six frequencies are considered and correspond
to transversal eigenmodes. The objective is to control
the first three eigenmodes.



4.1. Choice of the kinematics

Depending on the ratio L
h, a simple or a higher-order

beam theory must be used. It is illustrated in Figures 3
and 4, where the variation with k of the following dif-
ference between the frequency obtained by Euler
Bernoulli model fEBðnÞ, and the frequency obtained by
the Sinus model fSINðnÞ:

Dif ðnÞ ¼
fEBðnÞ � fSINðnÞ

fSINðnÞ

����
����100 n ¼ 1, . . . ,N ð58Þ

is plotted for the ratios L
h ¼ 10 and L

h ¼ 35.
For the first ratio, the difference between results with

the Euler Bernoulli and Sinus theories are very import-
ant, except for the first frequency. The use of the Sinus
model is essential for this kind of ratio. In the following
tests, the ratio L

h ¼ 35 will be used. For this ratio, results
are quite similar. Nevertheless, as the difference for the
last frequency can be higher than 4%, we will use this
kinematics in this paper.

4.2. k influence on the controllability and
observability index

The efficiency of the control system can be evaluated by
the two gramian matrices previously defined in (44)

and (47). The higher diagonal values, the better the
controllability or observability of the system. The vari-
ation of their first normalized diagonal values with k
are shown Figures 5 and 6 (the curves for the others
eigenvalues are similar). It appears that, for high a k
value, the controllability and observability are max-
imal. This is due to the metallic part of the FGM
which is predominant in this case: as the beam is
more flexible, it is easier to sense and to actuate to its
vibration. Nevertheless, a peak exists for the control-
lability curve. It comes from the coupling between axial
and transversal displacement in the component b11 (34).
As the axial displacement u is in the expression of b11, it
has an effect on the variation of ðWcÞ11 with k.

4.3. Active control of the FGM beam

The previous simulations show the influence of the par-
ameter k on the controllability and observability of the
system. In this section, we present three tests of active
control of the beam, using the LQR method. The par-
ameter k is fixed to 5. The construction of the control
law and observer is done using MATLAB. The object-
ive is to control the three first eigenfrequencies (for
k¼ 5: f1 ¼ 106Hz, f2 ¼ 420Hz and f3 ¼ 939Hz).
Accordingly, in all tests, the beam is equipped with
only one sensor. Its best location, obtained with opti-
mal criteria (51), is c1 ¼ 0:495m. The electrical poten-
tial is set to zero on all the interface between FGM and
piezoelectric patches.

4.3.1. Release test with two actuators. First, we study the
active control of the FGM beam in the case of a release
test. Only the two first eigenmodes are excited from an
initial load fzðxÞ ¼ 5:104ðcosð�x=LÞ þ cosð�2x=LÞÞ. In
this test, two actuators are used and located, from opti-
mal criteria (50), at 0.145 m and 0.4367 m. R is con-
sidered diagonal and its values are chosen in order not
to exceed the maximal admissible value of electric
potential. The observer estimates the state of the
system in 0.1 s.

The sensor output in the open and closed loop is
plotted in Figure 7. The amplitude decay of the open
loop response comes from natural damping, while that
of the closed loop system comes mainly from the feed-
back control. Figures 8 and 9 show the required input
actuators’ voltages for the active control. The vibra-
tions vanish in less than 7 s. If the components of R

are chosen to be smaller, the maximal values of the
input voltages will be higher and the control will be
more efficient.

4.3.2. Step load test with one actuator. The structure is
now subjected to a load step 5:104 N at the location
½L=3,L=3þ L=4�, for 2.5 s (Figure 10). It is controlled

Table 1. Geometrical characteristics of the beam and the

piezoelectric patch.

Beam

Piezoelectric

sensor

Piezoelectric

actuator

Length (m) 0.7 0.06 0.06

Width (m) 0.02 0.02 0.02

Thickness (m) . 0.0005 0.001

Table 2. Characteristics of piezoelectric patch PVDF and

PZT5A.

Piezoelectric

sensor (PVDF)

Piezoelectric

actuator (PZT5A)

�33 (F m�1) 1:062� 10�8 1:5� 10�8

e31 (C m�2) 0.046 �7.209

Table 3. Mechanical characteristics of the FGM beam.

Zirconia (ceramic) Aluminium (metal)

� (kg m�3) 3000 2700

E (GPa) 151 70
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Figure 7. Test 1: The sensor output for the open loop (green line) and closed loop (blue line).
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by one actuator located at a1 ¼ 0:145 m.
The sensor output in open and closed loops,
and the actuator input are presented in Figures 11
and 12. The effectiveness of the active control again is
shown.

4.3.3. Harmonic load test with one actuator. The structure
is now subjected to a persistent harmonic load applied
at ½L=3,L=3þ L=4� which equals 5:104 sinð754tÞ.

It is controlled by one actuator located at
a1 ¼ 0:145 m. Results are plotted in Figures 13
and 14 and vibrations are controlled in less than 12 s.

4.4. Uncertainty in the volume fraction index
k value

Previous simulations present the efficiency of the active
set up to control vibrations of FGM beam in the case
k¼ 5. Nevertheless, k is an empirical parameter and its
value is not necessarily accurate. Moreover the study of
the k influence on the controllability and observability
index shows that for k 2 ½0, 5� these quantities vary
strongly. Consequently, it is interesting to study the
impact of uncertainty in the k value on the vibrations
and active control.

In this subsection, an error of 5% is considered for
the parameter k. Figure 15 shows, for several values
of k, the variation of the relative error of Eðz, kÞ, in
relation of z, defined by:

Eðz, kÞ � Eðz, kð1þ 0:05ÞÞ

Eðz, kð1þ 0:05ÞÞ
ð59Þ
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Figure 11. Test 2: The sensor output for the open loop (green line) and closed loop (blue line).
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Figure 12. Test 2: The actuator input.
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Figure 14. Test 3: The actuator input.
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Figure 13. Test 3: The sensor output for the open loop (blue line) and closed loop (green line).



For small values of k (0:4 � k � 5), the variation of
the error is present throughout the thickness of the
beam, while it is more concentrated in the case of k � 10.

The relative errors for the six eigenfrequencies, in
relation with k, are given figure (16). All curves are simi-
lar: the errors decrease for k 2 ½0; 4� to a stable value.
Consequently, for small values of k, an uncertainty in
the k value allows the dynamics of the structure to
change and can affect the active control performances.

In the next simulations, we show two tests where
results of vibration are strongly influenced by the par-
ameter k. The actuator and the sensor are again located
in a1 ¼ 0:145 m and c1 ¼ 0:495 m. k equals 0.475 and an
error of 5% is added. The two tests are the following:

1. The beam is subjected to a step load 5:104 N at the
location ½L=3,L=3þ L=4� for 1 s. Results are plotted
Figures 17–19.

2. The beam is subjected to persistent harmonic load
applied at ½L=3,L=3þ L=4� and equals 103 sinð750tÞ.
The load frequency is nearly the first eigenfrequency
of the FGM beam. The input actuator and output
sensor are plotted in Figures 20 and 21.

In each test, two simulations are considered in closed
loop:

. Simulation without an error in the k value: k ¼ 0:5
and the LQR regulator and observer are developed
for this k value,

. Simulation with a 5% error in the k value: k ¼ 0:475
but we apply a LQR regulator and observer devel-
oped for k ¼ 0:5.

In the first test, for the open loop case, the difference
between the two simulations is very important. This is
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Figure 15. The relative error of Eðz, kÞ.
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Figure 19. The actuator input for the step load.
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Figure 18. The sensor output for the step load in closed loop.
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Figure 21. The actuator input for the sinus load.
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due to the load which is stopped suddenly. For the two
tests, the regulator (developed for k ¼ 0:5) suffi-
ciently controls the vibrations for k ¼ 0:475: the LQR
control is robust. Nevertheless, the maximal values of
the input actuator are very high. The maximal admis-
sible value of the piezoelectric patch can easily be
exceeded.

5. Conclusion

This paper deals with the implementation of the
active control tools for FGM beams control vibra-
tions, equipped with piezoelectric actuators and sen-
sors. Different from other investigations, the main
steps to set up the active control are considered.
First, an analytical formulation, based on a trigono-
metric shear deformation theory has been used to
accurately model the dynamic behavior of the struc-
ture, and to deduce a state space control system.
Then, the actuators’ and sensors’ locations are
defined using an optimization procedure to well
observe and control the first eigenmodes. Finally, an
efficient LQR control law including a state observer
has been computed.

The simulations clearly show that:

. The volume fraction index k influences the control-
lability and observability of the system.

. When the actuators’ and sensors’ locations are
defined in order to maximize the observability and
controllability of each mode in the same range, k
does not influence the optimal locations.

. The active control of FGM, equipped with patches
only bonded on the bottom of the beam, using the
LQR control law, is very efficient, for several kinds
of excitations, compared to the open loop
simulations.

. Even if there is an error in the volume fraction index,
the LQR law is robust and sufficiently controls the
vibration. But a kind of uncertainty can induce
values too high for the input actuators. In this
way, the active control system could be damaged.

This work is a first step towards the active vibration
control of FGM, as we have considered the FGM beam
in the thickness direction here. In future studies, the
described set-up of active control could be applied to
an axially FGM beam and also to more realistic struc-
tures like FGM plates and shells equipped with several
piezoelectric actuators and sensors.
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Appendix A. Definition of the
coefficients ‘‘h�i’’

For a function Fð y, zÞ:

hE,Fi ¼

Z h=2

�h=2

Z b=2

�b=2

Eðz, kÞFð y, zÞdy dz

hm,Fi ¼

Z h=2

�h=2

Z b=2

�b=2

�ðz, kÞFð y, zÞdy dz

he31i ¼

Z h=2

�h=2

Z b=2

�b=2

e31dy dz

he31ð f ðzÞ � zÞi ¼

Z h=2

�h=2

Z b=2

�b=2

ð f ðzÞ � zÞe31dy dz



he31f i ¼

Z h=2

�h=2

Z b=2

�b=2

f ðzÞe31dy dz

hGf 02i ¼

Z h=2

�h=2

Z b=2

�b=2

Eðz, kÞ

2ð1þ 
Þ
ð f 0ðzÞÞ2dy dz

h fzi ¼

Z h=2

�h=2

Z b=2

�b=2

fzð y, zÞdy dz ð60Þ

Appendix B. Definition of matrices
M0 and K0

M0 and K0 are 3� 3 symmetric matrices, whose coeffi-
cients are:

½M0�11 ¼ hm, 1i

½M0�12 ¼
p�

L
ð�hm, zi þ hm, f iÞ

½M0�13 ¼ hm, f i

½M0�22 ¼ hm, 1i �
p�

L

	 
2
�hm, z2i þ 2hm, zf i � hm, f 2i
� �

½M0�23 ¼ �
p�

L
�hm, zf i þ hm, f 2i
� �

½M0�33 ¼ hm, f 2i

ð61Þ

½K0�11 ¼
p�

L

	 
2
hE, 1i

½K0�12 ¼
p�

L

	 
3
ðhE, f i� hE,ziÞ

½K0�13 ¼
p�

L

	 
2
hE, f i

½K0�22 ¼
p�

L

	 
4
ðhE, f2iþ hE,z2i� 2hE, fziÞþ

p�

L

	 
2
hGf 02i

½K0�23 ¼
p�

L

	 
3
ð�hE,zf iþ hE, f2iÞþ

p�

L
hGf 02i

½K0�33 ¼
p�

L

	 
2
hE, f2iþ hGf 02i

ð62Þ


