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Abstract:

The perception of self is an important topic in esaV disciplines such as ethology,
behavioral ecology, psychology, developmental amdntive neuroscience. Self-

perception is investigated by experimentally exposlifferent species of animals to self-
stimuli such as their own image, smell or vocalad. Here we review more than one
hundred studies using these methods in birds, entaric group that exhibits a rich

diversity regarding ecology and behavior. Expogarself-image is the main method for
studying self-recognition, while exposing birdgheir own smell is generally used for the
investigation of homing or odor-based kin discriation. Self-produced vocalizations —
especially in oscine songbirds — are used as stimulinderstanding the mechanisms of
vocal coding/decoding both at the neural and abéeavioral levels. With this review, we

highlight the necessity to study the perceptiorself in animals cross-modally and to
consider the role of experience and developmeptas that can be easily monitored in

captive populations of birds.
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1. Introduction

1.1. The Concept of Self: definitions

There is a biological necessity for distinguishsedf from non-self at various levels of
organization: from physiological processes at #lifar level (e.g. to produce an immune
response) to individual-level behaviors, such ascrdninating kin and identifying
conspecific and hetero-specific cues (Sherman.etl8B7). Lewis (1994) proposed a
distinction between two levels of self that areenficonfused: “the machine self”, the
greater part of the self, which knows without knogvthat it knows, and the “idea of me”,
the smaller part — included in the machine selfhictv knows that it knows. The second
level refers to self-awareness, and involves tka @f consciousness which constitutes the
corner stone of the Theory of Mind (Edelman & S&009).

To better understand the concept of the “machiri, sge can refer toself-referent
phenotype matchinguring its development, an animal learns someaspof its own
phenotype, in particular through self-directed hvédrs, which it later uses as a referent or
template to identify relatives (kin recognition) epnspecifics (species recognition)
(Hauber & Sherman, 2001). Dawkins (1982) eupheoali called it the ‘armpit’ effect.
As underlined by Bekoff & Sherman (2004) such seférencing can be reflexive and
non-cognitive. These authors suggest two otheredsgoof self-cognizance: (1) self-
awareness, that enables an individual to discriteir@nsciously or subconsciously
between its own body or possessions from thoseth@rs, and (2) self-consciousness,

which involves having a sense of one’s own body mamed self, and thinking about one’s
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self and one’s own behavior in relation to the @diiof others. According to Bekoff &
Sherman (2014), self-awareness does not imply thdividuals use self-referent
phenotype matching or vice versa, whereas selfaonsness implies that an individual is
self-aware, and that it can use self-referencinger&fore, self-referent phenotype
matching is probably a prerequisite for self-coogsness. However, other researchers do
not make the same distinction between self-awaseard self-consciousness and these
two expressions are often used with the same gignide. For example, Lewis (2011)

defines self-awareness as “a mental representatiome.”

1.2. Mirror Self-Recognition

Several experimental paradigms have been designexplore these aspects of self-
awareness and self-consciousness in animals. Antbeg, the mirror mark test,
developed by Gordon Gallup (1970), seeks to detexrmihether an animal recognizes
itself in the mirror by marking a colored dot ore tanimal’s body. The mark needs to be
placed on an out-of-view body part so that it canlétected only with guidance of a mirror.
This is done without the subject noticing (subjestye often anesthetized for the first
studies) or with a procedure of sham marking usea eontrol. The mark test determines
if the animal can use its reflection to locate thark on its body, as measured by its
inspection, touching, or rubbing of the spot. VEay species pass the mark test of mirror
self-recognition (MSR) (Table 1).

In humans, MSR does not emerge until 15-24 monttegye (Amsterdam, 1972; Lewis,

2011) when the first signs of self-awareness appleese include introspection and mental
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state attribution (Piaget, 1952) along with empatBischof-Kohler, 2012), the use of
personal pronouns and pretend play (Lewis & Rani®3§4). Apart from humans, strong
evidence of MSR have been obtained only for the tpeat apes (Anderson & Gallup,
2011), bottlenose dolphin3rsiops truncatusReiss & Marino, 2001), Asian elephants
(Elephas maximysPlotnik et al., 2006) and magpieBi¢a picg Prior et al., 2008). A
variety of organisms including fishes, birds, sead, dogs and cats, although they have
not been formerly tested with the mirror mark tpsbduce very different behaviors toward
their own reflections (Parker et al., 1994). Selvepacies persist in responding to mirrors
as if confronted by another conspecific, even e¢hse of years of continuous exposure
to mirrors (Suarez & Gallup, 1986). Mirrors indusecially meaningful and strong
responses with such reliability that mirror-imagemslation has been extensively
employed to study aggressive and social patteraswide variety of species from fishes
to mammals (Parker et al., 1994). Some of theseiespeemonstrate the ability to use a
mirror to mediate or guide their behavior, for exdemmacaquedacaca fuscatpcan use

a mirror to reach hidden food that is only visillgh a mirror (Itakura, 1987). However,
the conclusion that self-directed behavior in resgoto a mirror implies some form of
human-like self-awareness is not free from contreywéParker et al., 1994). Similarly,
implication of self-recognition when passing therkngest is also a subject of debate
(Medina et al., 2011; Suddendorf & Butler, 2013).

While visual self-stimuli have extensively beendige primates, there is debate as to the
value of tests that rely primarily on senses othan vision. The mirror test has been
adapted to other modalities, such as scent. Faarios, Bekoff (2001) developed a

paradigm using urine-saturated snow (‘yellow sndt)testing self-awareness in dogs.
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Besides their own reflection and their own smeliraals have also been exposed to their
own vocalizations, not necessarily in the contéstadying self-awareness. Indeed, if self-
recognition is an important topic in comparativeg/gt®logy or cognitive neuroscience,
exposure to self-stimuli is often used as a contr@thology or behavioral ecology. This
paradigm has been extensively used in bird speaoiadifferent contexts, which we

summarize in the next section.

1.3. Why study the perception of self in birds?

The classAvesis composed of about 10,000 species with a rigbrdity regarding their
ecology and behavior.

Several experiments and observations in birds imareectly shown that the perception of
self is particularly relevant during interactiongtwother individuals, especially in the
context of sexual selection. Monogamy is partidylavidespread in birds and several
species exhibit assortative pairing: pairing with adividual of similar quality or
geographical origin. For example, non-random matwith respect to coloration is
commonly observed in birds (Hill, 2006). In domeated budgerigaréMelopsittacus
undulatu$, females prefer potential mates with contactscaibre similar to their own
(Moravec et al., 2010). In the laboratory, Holverid Riebel (2009) observed that female
zebra finchesTaeniopygia guttafareared in poor conditions develop acoustic pesfees
for the songs of males reared in similar conditi®everal experiments have also shown
that females reduce their choosiness when theiry baghdition is experimentally

compromised (Burley & Foster, 2006; Lerch et ab12, 2013). For example, cutting the
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flight feathers of female canarieSqrinus canaripdecreases female choosiness towards
male songs. The authors propose that this decheat®osiness is likely to be a residual
behavioral adaptation of being in poor conditiond & follows the evaluation of their own
flight quality in the aviary and therefore resultem the perception of self-properties
(Lerch et al., 2013).

The perception of self can also be affected byettperience of the animals. Some species
have the possibility to modify their self-charagtgcs through learning, and this is
particularly well-documented in some bird specieghe vocal domain (Bolhuis et al.,
2010; Bradbury & Balsby, 2016). Like humans, oscisengbirds, parrots and
hummingbirds exhibit vocal production learning, tapacity to imitate sounds from their
environment, mainly those produced by conspecifitss ability which is a prerequisite
for the development of human speech, is a rareitréhe animal kingdom and is shared
with certain marine mammals, elephants and batséems to be absent in non-human
primates (Bolhuis et al., 2010), although some Vplzssticity and abilities for vocal social
learning have recently been demonstrated in monftearaasson et al, 2005; Takahashi et
al., 2015). The architecture and connectivity oavand mammalian brains are much
more similar than had been recognized previous§m@& et al., 2004). For instance, avian
pallial ‘song’ regions bear functional similaritiasth human auditory and motor cortices
and the importance of the basal ganglia for bo#esp and birdsong is starting to be
understood mechanistically (Doupe et al., 2005jidat al., 2005; Mooney, 2009). These
aspects and others consolidate birdsong as thedmal model of choice to study the
behavioral, molecular and cellular substrates chVtearning, an important component of

language acquisition (Bolhuis et al., 2010). Stadleat cannot be conducted on humans
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for obvious ethical reasons can easily be done esfiive populations of oscine songbirds,
and exposing a bird to its own song is a usefuhoetto investigate the neural substrates
for individual recognition. Here, we are not revieg/the literature dealing with exposure
to self-produced vocalizations in mammals, bu likely that the number of studies would
be greatly outnumbered by those conducted in birds.

Besides the aspects linked to vocal learning, ttestrdies have shown that birds and
mammals faced a similar selection pressure for éexgognitive abilities, resulting in the
evolution of a comparable neural architecture oélioain association areas as well as in
cognitive operations (Butler et al., 2005). Thes@bwventricular ridge (DVR) of the avian
brain contains neuronal populations homologousdsé present in different layers of the
mammalian neocortex. The neurons of the avian DN@Rrmammalian cortex are nearly
identical in both their morphology and constitugtiysiological properties. Structural
homologies were also identified using molecular anchunohistological techniques. In
particular, neurotransmitters, neuropeptides, &oeptors specific to particular neuronal
populations within mammalian brain regions havenbleealized to homologous avian
brain regions (Edelman & Seth, 2009, Figure 1).

This high degree of evolutionary convergence iseeisfly apparent in the cognitive
abilities of corvids and parrots, big-brained bivdsose forebrains have a relative size the
same as those of apes, and who behaviorally perdrancomparable level with apes in
many domains such as episodic memory, tool-useteuty of mind (Figure 2; Emery &
Clayton, 2004; Emery, 2006; Gunturkin & Bugnyarl@0Van Horik & Emery, 2011). In

the field of animal cognition, variants of the moirtest have been used in birds but so far



162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

only magpies have been shown to recognize their reffection (Prior et al., 2008). We
will discuss this result later.

In the case of mirror self-recognition, the isstisalf-perception is addressed directly. As
we presented before, the perception of self isrgportant issue in the social life of a bird
during encounters with other individuals such asrdumate choice.

The aim of this article is to give a state of tieraview of the different studies dealing
either directly or indirectly with the perceptioh self in birds across disciplines such as
developmental and cognitive neuroscience, animaipdogy, ethology and behavioral
ecology. Birds have been exposed to self-stimulbugh different sensory modalities:
vision, olfaction and audition.

For a long time, it was believed that birds hadoarpsense of smell. But as we will
summarize, recent studies have shown that olfacmmwyals play an important role in
orientation and the social life of several birdgps (Caro et al., 2015).

Finally, playback of birds’ own vocalizations hadveen extensively used both in the field
and in the laboratory and in many species of bidsine songbirds exhibit an especially
strong response to the broadcast of their own dwoth, at the behavioral and at the neural
levels. Such experiments have helped us decipher rtechanisms of vocal
coding/decoding for example during socio-sexuatriattions such as territory defense.
Exposing a bird to its own vocal signature is afulsmeans to investigate the neural
substrates of individual recognition; a fruitfulpto of research that has been barely
addressed in other sensory modalities. This topis been also barely addressed in

mammals.
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Vocal learning allows fine vocal adjustments in sobird species and the perception of
self can also be addressed by an analysis of \‘abaling, namely the use of calls to
address a specific individual. Such vocal labeliag been shown in some parrot species
and people rearing parrots and corvids usually gisenes to their pets/experimental
subjects.

In this review, we want to stress the importancexgferience and the social environment
during development in self-recognition; these atgpean easily be monitored in captive
populations of birds. In the concluding part oktreview, we will propose future directions
to study the perception of self in birds includthg multimodality of the perception of self
(use of different sensory modalities) and otheeatplinked to emotions that could echo

recent realization in animal welfare.

2. Visual representations

2.1. Self-referent visual phenotype matching

Most birds learn conspecific characteristics frowitt parents and siblings. They probably
also take into account their own phenotype, andr latatch features of encountered
individuals to that template through self-refergmtenotype matching. Such self-
referencing was studied with cross-fostered angen@iised in social isolation) chicks
(Gallus domesticysSalzen & Cornell, 1968; Vidal, 1975). Salzen dwarnell (1968)

conducted a series of experiments to test the hgsi that self-perception explains

preferential choices of conspecifics by birds raiseisolation. They painted chicks with

10
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different colors and kept them in social isolation 8 days before testing them in a 2-
choice experiment with a companion from the santer@nd another one with a different
color. The authors conclude that the self-perceptigpothesis is tenable at least if
perception through reflection in water is includbdleed, chicks reared in isolation with
no drinking trough (water was administered by ggoéirectly in the crop) failed to show
any tendency to choose a companion with their color¢Salzen & Cornell, 1968). Even
with modifications to prevent self-reflection in tea such as painting the bottom of
drinking trough in white (Vidal, 1975), there isiégence that birds can perceive their
shadow. For example, domestic roosters exhibittsbipr displays towards their shadow
(Vidal, 1975). Vidal (1975) observed that an isethtock perceived and fixated on parts
of its own body (self-fixation), but remained abbeorient and adjust its behavior towards
a partner resembling itself. Social isolation canpr@vent proprioceptive feedback that
can complete the visual information that an anicaainot assess without a mirror (Vidal,
1975).1t has been acknowledged for a long time that erpartally isolated animals are
indeed never isolated from themselves (Lehrman3)L95

In interspecific brood parasites, however, earlgiaolearning could lead to species
recognition errors because young are reared ametegdspecifics. In an experiment,
feather color of hand-reared fledglings of the pii@brown-headed cowbird/plothrus
ater) was manipulated. Juvenile cowbirds approachedenwurickly and associated
preferentially with individuals that were coloreingarly to themselves (Hauber et al.,
2000). This result eliminates the possibility ttregir recognition template was genetically

determined.

11
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2.2. Exposure of a bird to its own reflection in a mirror

Mirror-induced self-directed behavior has beenigtith several species of birds. Most of
the species tested so far failed to show self-thebehavior in front of their mirror-image.
They have been tested either in the wild (chicka&eeus atricapillus Censky & Ficken,
1982; glaucous-winged gullsarus glaucescensstout et al., 1969) or in the laboratory in
captivity (Blue grous®endragapus obscurustirling, 1968; budgerigadlelopsittacus
undulatusand house sparrowRasser domesticussallup & Capper, 1970; a ké¥estor
notabilis Diamond & Bond, 1989; zebra finch@aeniopygia guttataRyan 1978; cedar
waxwingsBombycilla cedrorunand Juncodunco hyemalisAndrews, 1966; Lovebirds
Agapornis roseicollis Delsaut & Roy, 1980; African Grey ParrBsittacus erithacus
Pepperberg et al., 1995; Jungle Ci©arvus macrorhyncho&usuyama et al., 2000; Java
Sparrow Padda oryzivordVatanabe, 2002; New Caledonian Ci@arvus moneduloides:
Medina et al., 2011; Jackda®orvus monedutaSoler et al., 2014). Many of them respond
to thei self-image with social behaviour, i.e. theg the mirror-image as if it were a
conspecific. Some bird species exhibit aggressefeabior in the presence of a mirror
while others exhibit courtship displays. A Flamin@hoeniconais mingrflock exhibited
marching displays in front of mirrors (Pickeringuverge, 1992). Some bird species such
as house sparrows, parakeets and zebra finchebiteahpreference for mirror image
stimulation over visual access to a conspecifidl((pa& Capper, 1970; Ryan, 1978). This
preference was shown in the absence of auditory. diee authors hypothesized that the
mirror image could be perceived as a supernorrnmabgis since the mirror image would

always be both predictable and compatible withahienal's behavior. Mirrors are often
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used as a social substitute to reduce stress ytsgcial birds, such as starlingatrnus
vulgaris, Henry et al., 2008) and zebra finches, kept iciaddsolation for laboratory
experiments. Female pigeorSolumba livig would ovulate when exposed to her own
reflection in a mirror (Matthews, 1939). It is nstarthy that the length of exposure and
size of the mirror vary greatly across these said® far, MSR capacity using an adapted
version of the experimental procedure develope@Galup (1970) has been found only in
one bird species, the magpie (Prior et al., 20@@3rE 3). The authors used a sticker as a
mark that was stuck under the beak, in the throed, autside the magpies’ visual field.
Two magpies out of five were capable of removirggticker by scratching with their foot
in mirror-present sessions. The results obtainedagpies have important biological and
cognitive implications because the fact that magjpiere able to pass the mark test means
that mirror self-recognition evolved independentiythe magpie and great apes (which
diverged 300 million years ago) and that the ngegofwhich is not present in the bird’s
brains as mentioned before) is not a prerequisit®fiSR as previously believed (Prior et
al., 2008). Using the same experimental procedbméer and colleagues (2014) failed to
show MSR in jackdaws: they showed mark-directedhbsign in the mirror but also in the
no-mirror condition Moreover, the authors pointed out potential methagical problems
with the study on magpies. According to them, magpnight have detected the sticker
using tactile sense through feather sensitivityeyllsuggest to use more appropriate
marking methods for future avian marking tests sashusing paint that does not
agglomerate the feathers or, at least allows ®ptrfect separation of feathers when dried,
for instance typing correction fluid. However, astof the magpies showed significantly

more mark-directed behavior when tested in frona ahirror than in the absence of a
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mirror, tactile sense cannot be the sole explanattw their mark-directed behavior.
Another interesting result from the magpie and fhekdaw studies is that in both
experiments the birds showed self-contingent beingue., they moved their head or the
whole body back and forth in front of the mirrorarsystematic way). In the magpie study,
the 3 birds that showed self-contingency behavies ahowed mark-directed enhanced
behavior in the mark test (this was significanttfeo of them).

Mirror studies were also conducted in two othewmbspecies, namely the jungle crow
(Kusayama et al.,, 2011) and the New Caledonian qfidedina et al., 2011). New
Caledonian crows, but not jungle crows, had thesipdgy to explore behind the mirror as
in the magpie study. No self-contingency behaviasweported for the jungle crows; the
birds may not have received enough mirror expegethough, since they had only 3
sessions of 25 minutes with a vertical mirror, Htr@lsame amount of time with a horizontal
mirror. Exposure to mirrors was also very limitadthe study on New Caledonian crows,
only 3 sessions of 10 minutes. The authors repattietl they did not observe self-
contingent behavior, but that 3 juvenile crows @utO birds) reacted to their mirror image
by repeatedly performing “peekaboo” behavior. Soehaviors could in fact be a kind of
self-contingent behavior, and were also observednia of the two young grey parrots
tested by Pepperberg et al. (1995). The other gesyot also showed a kind of self-
contingent behavior: in 3 sessions out of 15, shieafoot against the mirror and placed
her head as to provide a simultaneous view of el dnd its mirror image. African grey
parrots (Pepperberg et al., 1995) and New Caledarriews (Medina et al., 2011) also

showed the ability to use a mirror to locate hidésd.
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In many studies, the mirror was presented in aicatrposition. The horizontal mirror
image may mimic a reflection from a water surfacd @& would be more natural for the
bird to see the image as its own. On the other haartical images are more natural than
the horizontal ones if they are seen as imagesmdpecifics. Indeed, an upright mirror
was more effective for evoking social aggressiveaveor than a horizontally placed mirror
(Kusayama et al., 2000; Pepperberg et al., 1995).

To sum up, self-contingent behavior was observeteést in some individuals) in 3 out
of 4 studies in corvids and in the one study wighrgts. Only two mark tests have been
conducted in birds: the magpie study, in which saithe birds passed the test, and the
jackdaw study, which was not conclusive, sincelings showed mark-directed behavior
in both the mirror and no-mirror conditions, prolyabecause they sensed the sticker on
their feathers. Therefore, although more experisiaré needed (particularly conducting
mark tests with a design ensuring that tactile rqgié$ not possible) these data are very
promising and hint to some ability for MSR in calsiand parrots. These abilities would
be consistent with high performance in these bindsasks related to theory of mind
(Bugnyar et al., 2016; Dally et al., 2006; EmergZ&yton, 2001; Péron et al., 2010; 2011).
It is extremely crucial to check whether self-diegt behavior in birds represents a
spontaneous response to seeing their own bodyeimitror. Pigeons were successfully
trained to peck at a spot on their bodies thatccouly be seen with the aid of a mirror
(Epstein et al., 1981). Thompson & Contie (1994¢éhto replicate these results although
the exact details of the training procedure hadbs@n documented and training could
have been a crucial factor in obtaining positiveutts. Indeed, Uchino and Watanabe

(2014) recently revisited self-recognition in pigeaising a similar procedure as Epstein
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and collaborators. They observed that after extertsaining with food reinforcement, two
pigeons spontaneously integrated the learned gelftdd and mirror-use behavior and
displayed self-directed behavior in a mark testalprevious experiment, the authors
trained pigeons to respond to live video imagetheMmselves and not to respond when
they viewed prerecorded videos (Toda & Watanab@3R®igeons’ discrimination of self-
movies was based on the temporal contiguity betvtleein behavior and visual feedback
since their relative response rate to delayed ptasen of live self-movies gradually
decreased as the temporal discrepancy betweerntheibehavior and the corresponding
video increased (Toda & Watanabe, 2008). Thesdtsesuggest that the visual properties
of self-image are not the primary cue for self-iggation, and the visual-proprioceptive
contingency between a subject’s action and theespanding visual scene reflected in a
mirror might be an essential component. If so,&ctisjmight not require complex cognitive
and social abilities to discriminate self from athéToda & Watanabe, 2008). That said,
pigeons need extensive training for this form ¢fs=ognition which contrasts drastically
with humans and other species that do not need tsaicting. This is the case with the
magpies that exhibited self-related behavior imfrof a mirror after a rather short
cumulative exposure time and without being spedlifictrained to do so (Prior et al.,

2008).

3. Exposure of a bird to itsown smdll

In several petrel species of burrow nesters, tmeotwolfactory signature is important for

homing. Using a T-maze experiment, de Léon et2808) showed that European storm
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petrel chicksKlydrobates pelagicysre able to recognize their own odor and thatador
leads them back to the nest.

Using a similar kind of maze experiment, it waswhdhat Antarctic prionsRachyptila
desolata preferred their own odor when presented agaimstdarless blank cotton, thus
demonstrating the bird’s capacity to perceive ediif (Bonadonna & Nevitt, 2004).
Further work on this species and blue pettdldbaena caeruldademonstrated that these
birds could discriminate between their own andrthetes’ odors. They are attracted by
their mate’s odor, and they prefer the odor of mspecific bird to their own (Bonadonna
& Nevitt, 2004; Mardon & Bonadonna, 2009). Such debr could be related to kin
recognition and inbreeding avoidance (Bonadonn@9R0Another study has shown that
Humboldt penguins §pheniscus humboljitpreferred unfamiliar non-kin odors over
unfamiliar kin odors (Coffin et al., 2011). Thisidly provided evidence of odor-based kin
discrimination in a bird, probably through a medsanof phenotype matching. Olfactory
preferences may vary with age and/or social cordexhat self-odor avoidance may be
developed only at sexual maturity.

Although olfaction was often believed to be unintpat in songbirds, zebra finch and
Bengalese finchLonchura striata)females (but not males) prefer the odor of theino
nest over a foreign conspecific nest (Krause & €ess@2012). Young zebra finches also
prefer the odor of their natal nest over a foreiget odor (Caspers & Krause, 2010). This
preference is learned very early, in the 48h dfeéeéching, or maybe even before hatching,
as shown by cross fostering experiments (Caspets @013, Krause et al., 2012).

As discussed above, some birds can recognizedWweirodor, but this could be based on a

simple familiarity rather than on a concept of séld separate between these alternatives

17



367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

is not easy. Some matching-to-sample experimeniddze conducted in which a bird
would have to match the odor of different conspesifincluding itself, to vocalizations or
images. However, to solve this task, the bird wddde to identify his own odor but also
his own vocalizations or image. Some priming experits ( exposure to one stimulus to
influence the response to another stimulus) usiifigrdnt modalities could also be

informative in this respect.

4. Exposure of a bird to its own vocalizations

As mentioned before, birds are of particular inderegarding vocalizations since many
species (mostly oscine songbirds representing dtadfiof all bird species) exhibit vocal
production learning, which is the capacity to iretaounds from the environment, mainly
those from the social environment produced by cecifips. In other, non-vocal learning
species, such as columbiforms (e.g. pigeons, daresyalliforms (e.g. chickens, quails),
the structure of vocalizations is under a strongege determinism despite some
rudimentary vocal plasticity reminiscent to thasc#bed recently in non-human primates
(Derégnaucourt et al., 2009). Some vocal leardiges starlings and canaries, are able to
learn new songs throughout their lives, sometimetd limited periods of time during
the year, while others, like zebra finches, cary ¢edrn to imitate a song model during a
sensitive period in the first year of life (Braida& Doupe, 2002). Some species, such as
the zebra finch, produce a single (short duratsmmyg while others, such as the nightingale
(Luscinia megarhynchospossess a song repertoire composed of hundreddferedt

song types (Catchpole & Slater, 2008).
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4.1. Experimentsin thewild

To our knowledge, all experiments in the wild camce@scine songbirds. The first
experiments using the Bird’'s Own Song (BOS) aimedralerstanding the function of
different songs in the bird’s repertoire (GreatFarus major Krebs et al., 1981; Bréemond,
1968). Some studies investigated more subtle asgech as song timing during vocal
exchanges in nightingales (Hultsch & Todt, 1982)rdpean blackbirdsTurdus merula
Todt, 1970, 1975, 1981; Wolffgramm & Todt, 1982§ayreat tits (Weary et al., 1990). In
most of the cases, the broadcast of the BOS hasusssl as a control in experiments of
simulated territorial intrusion with the idea ttia¢ birds could use their BOS as a reference
against which other songs could be evaluated (Mbukr 1986). In such experiments,
birds exhibit different behavioral responses tlmatld be measured such as their latency to
react, their approach to the loudspeaker, the numibgongs produced and the acoustic
similarity between the songs produced and the boogdcast (‘'song matching’).

In some species, behavioral responses to song gukybare maximal when the song
broadcast is the BOS. For example, in great tigdigFet al., 1982), western meadowlarks
(Sturnella neglectarFalls, 1985) and song sparrows (Stoddard €t1892), song matching
was maximal following broadcast of the BOS in congmn with neighbor and stranger
songs. In other studies, the BOS produced an imtiate response strength falling
between that elicited by the songs neighbors aadgérs (ovenbirdSeirus aurocapillus
Weeden & Falls, 1959; white-throated sparrgenotrichia alhicollis Brooks & Falls,
1975; swamp sparrowdelospiza georgianaSearcy et al., 1981; red-winged blackbirds

Agelaius phoeniceu¥asukawa et al. 1982).The majority of birdsongeach concerns
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male song, but females from many oscine songbiedisp also sing (Odom et al., 2014).
In the red-winged blackbird, females gave stagdiycsimilar responses to playback of
BOS and stranger songs (Beletsky, 1983).

In song sparrows, results differ between differgntlies and this highlights the necessity
to take into account the methodological aspecth®fplayback procedure, the response
measures and the statistical treatment of the @&dme studies have shown that the
response of male song sparrows to the BOS is ffetelit than the response to a stranger
song, both in terms of aggression (approach tspleaker; Searcy et al., 1981) and song
matching (Stoddard et al., 1992). In contrasthsdnly study conducted with the goal to
demonstrate auditory self-awareness in birds, Mbuxr(1986) observed that the territorial
response was minimal during the broadcast of thé& B@d that the strength of the
territorial response was inversely correlated i similarity of the stimulus song to the
BOS. Nevertheless, song matching was also higheh®BOS than for a stranger song
acoustically dissimilar to the BOS. Some of thessaults were not statistically significant.
It is also worth mentioning that these studies wdome before the advent of the
multivariate-measure approach (such as principatpoment analysis) that became a
standard in the design of playback experimentsedine 90's (Mc Gregor, 1992).

How can we interpret these results? In the casewiesbird exhibits a strong response, it
may be that he perceived the BOS as a fully shetradger song. One’s own sounds might
be perceived as different since the normal bonéwction that is present when emitting a
sound is absent from the playback sound. In theesaay the human voice sounds strange
when heard from a tape, a bird could react to I@SEs though it were produced by a

stranger. Response to BOS in song sparrows isagitoillesponse to stranger song both in
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terms of matching (Stoddard et al. 1992) and aggyegSearcy et al. 1981 but see Mc
Arthur, 1986), and another study suggest that tisen® voice recognition in this species
(Beecher et al., 1994). However, a bird could aésmgnize his BOS and react strongly
because he is surprised to hear himself. He waubtoach the loudspeaker or even sing
in order to investigate what is happening; theefoery detailed description of the bird’s
behaviors would be needed to discriminate betweenraly territorial response and a
surprised response.

When the response to the playback of the BOS ikwaalitory self-awareness could be
suggested but there are also other alternativethgpes (Mc Arthur, 1986). Habituation
and familiarity could be involved. One would expacmale to hear his own song more
often than that of any of his neighbors. If a m&leérception of his own song as he sings
it is the same as his perception of its BOS plaglfane can only speculate about the
degree to which a bird’s skull distorts the pergepbf its song as it is sung), a weaker
response to BOS than to neighbor song would baqteed For reasons already mentioned
above, the results obtained by Mc Arthur (1986) hisdinterpretation of the data have
been questioned (Suarez & Gallup, 1987; Mc ArtH287), and most results obtained in
song sparrows show that birds consider BOS asgsraongs.

Brooks and Falls (1975) provide an explanation dar intermediate response to the
playback of BOS (responses measuring between tbadeanger and to neighbor songs).
During the broadcast of a song in the territoryaofocal bird, song activity from his
neighbors is sometimes observed and this vocaVigcttould affect the behavioral
response of the focal bird. During the broadcast stranger song, the strong response of

a focal bird could be enhanced by the strong respaf his neighbors. During the
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broadcast of his BOS, his neighbors should receghim and act accordingly by singing
less. This low activity might affect the respon$ehe focal bird. But the BOS may also
sound intermediate in terms in familiarity: lessftar than a neighbor song because of
the bone distortion, but more familiar than a caostgdly stranger song.

The different reactions to the BOS playback are ptebably linked to the different socio-
ecological aspects of the different species thatwested. During song playback, males
of some species engage in counter-singing: thegyz®the song that best resembles the
playback song (Bremond, 1968; Falls et al., 1988)eed, many species of oscine
songbirds often engage in copying and matchingdetirough which they address each
other. Depending on the context, they could useeegong type matching, (producing the
same song they hear) or repertoire matching (piaducshared song type while avoiding
singing the same song type). Playback of the BO& baen used extensively in several
experiments on matching in song sparrows (Akcagl.e011, 2013, 2014; Anderson et
al. 2005; Searcy et al., 2013; Stoddard et al.2L90r example, song sparrows use song
type matching when defending their territory agaarsunknown male, but avoid it when
interacting with known neighbors with whom they umere subtle repertoire matching
(Beecher & Campbell, 2005). Repertoire matching reléyw addressing a neighbor in a
more affiliative or neutral way. For example, s@spmarrows, western meadowlarks and
great tits do not type-match a neighbor’s songdauthe BOS or a stranger’s song (Falls,
1985; Falls et al., 1982; Stoddard et al., 1992kdme species such as the great tit, if the
theme broadcast is absent from the bird’s repestdiwill reply with the theme closest in
structure within its own repertoire (Krebs et #881). This form of categorization suggests

that there is an auditory reference to which tlimwdtis is compared before production
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occurs. Such a reference is the result of diffeneihiences, particularly learning. More
recently, playback of the BOS brought to light entwer in repertoire composition over a
relatively short period in great tits (Franco & Idé@koorn, 2009).

Another hypothesis was that the BOS could be usedraference in localizing the emitter:
degradation of a song over distance may be useal @ if the male has his own,
undegraded rendition of the song to use as a st@dufsliorton, 1982). Mc Gregor & Krebs
(1984) have shown that great tits respond lesaigiydo degraded than to undegraded
song? not only if they are sung by the birds théwesgBOS) but also if they are produced
by neighbors. This result suggests that birds damecessarily need to have a song in their
own repertoire to use sound degradation as a distaure but rather to be familiar with the
song broadcast. This finding that birds can assesdegree of degradation of songs that
they do not sing, supports the idea that birdsl@ore songs than they sing.

Altogether, these experiments have shown that fantyl and acoustic similarity with the
BOS are taken into account by the focal bird tosjgt® an appropriate behavioral response

(song matching, approach to the loudspeaker) dwamg broadcast.

4.2. Experimentsin the laboratory

The hypothesis that the BOS is used as a refer@yaast which other males’ songs are
evaluated was first proposed by Hinde (1958) basekis experiments with hand-reared,
tutored chaffinchesHingilla coelebs. He tutored young males with abnormal songs,
which they learned and later sang as adults. Wieadults heard normal chaffinch songs

and their abnormal BOS, they produced more songssjpponse to the abnormal BOS.
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Similarly, adult zebra finche3 @eniopygia guttateexpress a robust behavioral preference
for the playback of their BOS compared with condpeenale song in a phonotaxis
experiment (Remage-Healey et al., 2010). Howewer tutor song is a stronger stimulus
than the BOS: finches exposed either passivelgrough operant conditioning to the tutor
song during development preferred the training sy a novel song as well as over their
BOS as adults (Adret, 1993). Using operant coniitig, it was shown that males trained
to discriminate between their own song and anofugrg from their aviary reached
criterion in a fewer number of trials than maleatthad to discriminate between songs
from their own aviary, with the most training regad by males discriminating between
songs they had not heard before (Cynx & Notteboh®892). While most studies
investigated songs in oscine songbirds, it is wartentioning that the ‘autogenous
reference’ could be also used in non-vocal leaspecies through self-referent phenotype
matching. For example, in a two-choice experimaagnate chicksGallus domesticys
exhibited a preference for a speaker broadcastinmternal call with acoustic features
resembling those of the bird’s own twitter rathieart a speaker broadcasting a maternal
call with acoustics dissimilar to their own twittguyomarc’h, 1973). Similarly, chicks
raised in mixed flocks of two varieties, when tesie a Y-maze, learn to go to chicks of
their own variety more readily than to those of titieer variety (Howells & Vine, 1940).
Besides genetic influences, it is also plausibl the chick’s experience with its own
chirping could be used as a source of differete@ining (Schneirla, 1946).

At the neural level, the earliest attempts to rdcnging-related activity in the brain of
freely behaving oscine songbirds (canaries and eadribwned sparrows) detected

increased activity not only during singing but aldeen the BOS was broadcast through a
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speaker (Mc Casland & Konishi, 1981). This paradigsed in more than one hundred
studies so far, could permit to look for the neteahplate that determines the BOS.
Songbirds have specialized, discrete brain redmmsong production and learning (Figure
4). The Song Motor Pathway (SMP) is involved ing@noduction and certain aspects of
song learning, and the Anterior Forebrain PathwsiyR) that connects with the motor
pathway, is essential for sensorimotor learning addlt song plasticity. These two
pathways together are usually called the ‘songrobaystem’ (Brainard & Doupe, 2002).
The sensorimotor nucleus HVC (used as a proper hatmeh belongs to the SMP was
the first song nucleus in which song-selective apsirwere observed (Mc Casland &
Konishi, 1981). Most neurons from the HVC that aesponsive to song playback are
highly selective for the BOS, firing more to forwaauditory playback of the BOS than to
reverse BOS or conspecific songs (Margoliash, 19886; Margoliash & Konishi, 1985;
Mooney, 2000).

In contrast, field L neurons from the primary aadjtregions, which are presumed to be a
source of auditory input to HVC, do not exhibitesglvity for BOS (Margoliash, 1986;
Boumans et al., 2008). These observations implsatg (motor) learning in shaping the
response properties of HVC but not of auditory paar

It has been proposed that HVC auditory neurons omayjribute to a bird’s ability to
discriminate among conspecific songs by actingras&atogenous reference’ during the
perception of those songs (Margoliash, 1986). Qutime process of song acquisition,
auditory neurons in the song control system argedhao respond best to the BOS

(Margoliash, 1983; Doupe & Konishi, 1991).
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This pattern of self-responsiveness is even foumddult birds raised without a tutor
indicating that self-experience is a critical facto shaping BOS-selectivity (Kojima &
Doupe, 2007). Furthermore, BOS-selective audit@yponses in HVC and the AFP
emerge as sensorimotor learning progresses (Volb®®3; Doupe, 1997; Solis & Doupe,
1999; Nick & Konishi, 2005a,b).

Using lesions both at the central and peripheralte the development of the selectivity
for the BOS and its neural template could be ingaestd (Remage-Healey et al., 2010;
Roy & Mooney, 2007).

Male finches muted during the sensitive periodsang learning responded to playbacks
at chance levels as adults, showing no prefereioc@sdividual conspecific songs. These
results suggest that the acquisition of the BOS comyribute to the perceptual processing,
recognition, or discrimination of different conspgecsongs (Pytte & Suthers, 1999). This
experiment and others support a hypothesis whialm iavian parallel to the motor theory
of speech perception in humans (Williams & Nottanph985). This theory proposes that
speech is perceived not just as a sound but agea séarticulatory gestures (Liberman &
Mattingly, 1985).

Many techniques have been applied to investigadithctional organization of the song
system. Although single-cell electrophysiology Hasen the most successful, other
technigues such as gene expression and brain ignagie helped to decipher the neural
coding of the BOS (Kimpo & Doupe, 1997; Boumanslet 2008; Van der Kant et al.,
2013).

Taken together, these results suggest that BOStsel@eurons in oscine songbirds could

provide an ‘error signal’ that promotes changesang production when a mismatch is
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detected between auditory feedback from self-sodglae memorized song template, and
could thus have a role in both song learning anmht@i@ance (but see Leonardo, 2004). A
second function might be the perception of condpesbong. These functions are not
necessarily mutually incompatible. They could deat play in non-songbird species. For
example, the influence of auditory feedback on akxdevelopment has also been
extensively studied in a non-vocal learner spetiesring dove $treptopelia risoriq In
this species, courtship is initiated by males. Mat®os (the equivalent of song in oscine
songbirds) is an integral feature of the courtsMfhen the female is motivated, she
produces her own ‘nest coos’ in response to the’mabos. Several experiments in intact,
muted, and deafened female doves have shown tflemtale’s own nest coos affect her
endocrine state (Cheng & Durand, 2004). For exanmpderback of the female’s own coos
was the most effective stimulus for her folliculdevelopment, but playback of other
female coos was also more effective than playb&ckate song.

Most studies of the song selectivity of HVC neurtwase been performed in the zebra
finch, a species that sing a singteng (Catchpole & Slater, 2008). Studies in otbagbird
species that sing several song types or longerisavg expanded this picture and provided
new insights into the neural coding of song in H¥C (Nakamura & Okanoya, 2004;
George et al., 2005; Nealen & Schmidt, 2006; Allieret al., 2013). For example, the
swamp sparrow is a species that sings 2-5 simplg sgpes, each consisting of the
repetition of a single syllable. Some neurons inCH&xhibit both motor-related activity
and auditory responses to a playback of a BOSu8k,ghese neurons are reminiscent of

the mirror neurons discovered in the monkey brBiather et al., 2008).
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Selectivity of HVC neurons is modulated by the bhatial state of the animal, and
interspecific differences have been observed (Magjo & Schmidt, 2010). For example,
in the zebra finch, neurons with responses to B@agback in anaesthetized or sleeping
animals do not always show these responses wheheBnare awake, indicating that
auditory responses to sounds are ‘gated’ by tha\beral state of the bird and little or no
auditory-evoked activity is detectable in the HVE the AFP during periods of
wakefulness (Cardin & Schmidt, 2003). In contrastig-evoked auditory responses have
been detected in song system of awake sparrowlngsa canaries and Bengalese finches,
indicating that the ‘gate’ between the auditory @othg systems remains open in these
species (McCasland & Konishi, 1981; George et24lQ5; Margoliash, 1986; Nealen &
Schmidt, 2006; Prather et al., 2008; Fujimoto gt2011).

In the zebra finch, timing and structure of newetivity elicited by the playback of the
BOS during sleep matches activity during daytinmgisig in many brain nuclei of the song
control system such as the HVC and the RA (Dave &ddliash, 2000; Hahnloser et al.,
2002). Additionally, ‘spontaneous’ activity of tleeseurons during sleep matches their
sensorimotor activity, a form of song ‘replay.” Beedata suggest a model whereby
sensorimotor correspondences are stored duringngitogit do not modify behavior, and
off-line comparison (e.g., during sleep) of rehedrmotor output and predicted sensory
feedback is used to adaptively shape motor oufpertggnaucourt et al., 2005; Margoliash
& Schmidt, 2010). To conclude, the perception & BOS and to some extent of the self

is affected by the behavioral state and can alsaddeessed in sleeping birds.
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5. Use of learned signals asindividually specific labels

It is well known, in both vocal and non-vocal lears that animals can recognize a
conspecific based on acoustic cues. Addressingeagfific individuals in a communication
network can be achieved by vocal labeling, whespecific vocalization is linked to a
specific individual (Balsby et al., 2012). In caty, animals can be easily trained to
associate a sound, often a human spoken wordavgénsonal reward such as food or care.
For example, using a combination of classical gmefrant conditioning procedures, pigs
living in a group can be trained to enter a feemdy after an individual acoustic signal
has been presented. This call feeding proceduremmzies queuing and thereby reduces
aggression, stress and injuries associated withrfgéManteuffel et al., 2011). In the wild,
there is evidence that bottlenose dolphins recegthizir own vocal signature (King &
Janik, 2013). In birds, some species of parrote leeen found capable of using arbitrary,
learned signals to label or name objects in expartal studies (Pepperberg, 1981). In
captivity, parrots can learn to pronounce their mame and to respond to it more than to
the name of other individuals (Bovet, Giret & Péranpublished obs.), but, as in the case
of pigs cited above, this could be the result afiraple conditioning effect that is not
necessarily linked to self-awareness. Researchandmwg with ravensCorvus cora)can
also easily get the bird’s attention by callingname (Bugnyar et al., 2016). One raven
raised in captivity in isolation who was named @tliwould produce its name when his
caretaker would enter in the room (Gwinner, 1984gere is also evidence that a kind of
naming is also present in the natural communicasigstem of some bird species. For

example, spectacled parrotle(pus conspicillatususe contact calls to refer to a social
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companion and thus label or ‘name’ their conspeif\Wanker et al., 2005; Figure 5).
Such labelling could help capturing the attentibaral further interaction with a particular
individual in the social group, similarly to humareling out the name of an associate at
a noisy social gathering. It is possible that thesetact calls used as labels or ‘names’
could be imitations of the addressee’s calls bat ltypothesis has not been tested yet in
this species (Bradbury & Balsby, 2016). Such inotathave been observed in orange-
fronted conures Aratinga caniculari3. Conures can imitate contact calls almost
immediately upon hearing them (Balsby & Bradbu@0@). In this fusion/fission species
that is non-territorial and that lives in small gps, vocal matching is observed in the wild
prior to flock fusion and might represent some fmfmegotiation (Balsby & Bradbury,
2009). Orange-fronted conures can use imitatiorcasftact calls to address specific
individuals of a flock (Balsby et al., 2012). Thetlaors argue that the fission-fusion flock
dynamics of many parrot species has been an impddator in evolving conures’ and

other parrots’ exceptional ability to imitate (Blady & Balsby, 2012).

6. Conclusion and futuredirections

Exposing an animal to its own image, smell or viaedions experimentally has helped us
understand how individuals process social inforamatBince the perception of self can be
achieved using different sensory modalities, it lddae of interest to investigate whether
each modality controls a different level of selifdhese different levels are linked to each
other in order for an individual to build an intagive and unified template of self. In many

species, subjects are able to match the voicefaimdiar conspecific to its image. For
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example, large-billed crows are sensitive to idgntongruence between the visual
presentation of a group member and its contaci(alhdo et al., 2012), and grey parrots
can visually and acoustically discriminate consfpexi(Giret et al., 2009). Therefore,
maybe a concept of self could be cross-modal. mtddimans, priming experiments
suggest that the brain processes information ahewgelf in highly integrated ways: being
exposed to one’s own body odor and a visual ortarydpresentation of one’s name
facilitated self-face recognition in a reaction¢inask (Platek et al., 2004). The perception
of emotion through cross-modal sensory integragiwatbles faster, more accurate and more
reliable recognition (Yuval-Greenberg & Deouell02). As mentioned before, matching-
to-sample experiments using a bird’s own odor, lipatons and/or image can be used to
study self-recognition. It would be interesting poesent birds their own odor or
vocalizations and see whether they facilitate mig@lf-recognition, or to train them to
give a particular response to their own image,arevshether priming effects would be
found by presenting their odor or vocalization ames simultaneously. Of course, training
birds to respond to their own vocalizations or odad then priming them with other
modalities could be done too. Such aspects anck thased to the formation of cross-
modal individual recognition through experience aadial interactions could be easily
studied in captive populations of birds.

As in other animals, the concept of self in birds e addressed through two main areas
of research: self-referent phenotype matching aifebsvareness.

Self-referent phenotype matching has been demaedtina birds using visual stimuli and
it is likely that it is at play when birds discringte among different conspecifics based on

acoustic cues. The major histocompatibility comgC), which plays a central role in
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disease resistance and immune defense, represggsial case of self-referent phenotype
matching, and it is also involved in olfactory mateice decision in several vertebrate
taxa including birds (Caro et al., 2015).

Self-awareness is the most fascinating aspectIbfesmgnition information and it has
been proposed to la@ important component of the Theory of Mind. Aswtiened before,
most birds consider their own reflection as anotheividual. Corvids and parrots showed
self-contingent behaviour in front of a mirror, bably magpies seem to recognize
themselves in a mirror without extended exposurthéomirror or training (Prior et al.,
2008).

The assumption that self-recognition is an indicatcself-awareness appears to be valid,
since to show spontaneous self-recognition (witlspetific training), an animal needs to
be sufficiently self-aware to understand how itdedrom another perspective (Anderson
& Gallup, 2015) and, as highlighted above, thidighis often correlated with other signs
of self-awareness. On the other hand, the failfi@arganism to respond appropriately
to mirrors is more difficult to interpret and daast necessarily imply the absence of self-
awareness (Povinelli, 1987). Therefore, birds mayseélf-aware, and show it in other
experiments, without exhibiting MSR. First, the rairtest might not be appropriate for
species that consider direct gaze as a threatasicdogs and many species of primates.
Unlike primates, birds do not possess facial maatd revealing precise details about
their emotional state. However, they can expressesof their emotional states with their
feathers, and, in birds that possess a crest suttte@ockatoo, with their crest movements

(Athan, 2010). Animals are usually tested aloneNd8R could be obtained more rapidly
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if animals were tested with another familiar indwal. Indeed, simultaneous exposure to
a familiar individual and its reflection in a mirroould facilitate MSR.

Second, one should keep in mind that though MSIRatsfa crucial step in the emergence
of self-recognition, the fully fledged capacitydesmplex, and comparative, clinical, and
developmental studies suggest an overall gradwalolement of this capacity in animals
including humans (Rochat, 2015). Behaviorists haesl to link MSR to conditioning,
claiming that the relationship between self andonican be learned. As mentioned before,
they successfully trained pigeons to locate a spdahe body by using a mirror (Epstein et
al., 1981). In the same way, MSR was recently sssfally induced in Rhesus monkeys
after visual-somatosensory training. Monkeys weséd in front of a mirror to touch a
light spot on their face produced by a laser lihlat elicited an irritant sensation. After 2-
5 weeks of training, monkeys had learned to touthca area marked by a non-irritant
light spot or odorless dye in front of a mirror @iy et al., 2015). These experiments do
not really prove any self-awareness, however, siheecritical issue is whether animals
spontaneously connect their reflection with themdoody. But it is worth mentioning that
in studies performed with birds, mainly adult anisnavere used, without a precise
knowledge of their developmental background alttotigese aspects could be easily
monitored in captive populations. Several studesgtshown that animals including birds
are often exposed to their own reflection for exemm the drinking trough and
manipulating this reflection can affect their beloaySalzen & Cornell, 1968). Therefore,
the duration of exposure to their own image israatly known, and mirror self-recognition

may be linked to this duration.
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731 Inthe same way that many bird species interpest teflection in a mirror as a conspecific,
732 itis likely that they consider playbacks of thBDS as a stranger’s song and, as discussed
733 above, this paradigm has been used extensivetydy socal interactions during territorial
734 challenges (Akcay et al., 2011, 2013, 2014). Howeseen a chimpanzee touching a red
735 spot on his head can be interpreted in differenysw@leyes, 1994), and reactions to
736 playbacks of the animal’s own vocalizations areneless easy to interpret in the context
737  of self-recognition (Mc Arthur, 1987). For exampliepending on the species, a bird would
738 approach a speaker, produce songs and/or callsraediain silent. One possibility would
739 be to use live or delayed auditory feedback. Thbida give the opportunity to the bird to
740 adjust to the fact that vocalizations produceddiveay sound distorted on playback.
741  Moreover, if the animal was capable of auditory-sstognition, not only should it come
742  to distinguish its vocalizations from those of athmglividuals, but it also ought to respond
743 differentially to unexpected changes or distortionthe playback of its vocalizations that
744 it did not itself produce, akin to the mark teswidual self-recognition (Suarez & Gallup,
745 1987). Such experiments are challanging to conituitte wild, but they would be easier
746 to manage with captive populations of birds. Intipatar, to our knowledge, reactions of
747 corvids or psittacids to the broadcast of their owstalizations have never been
748 investigated.

749 Studies obtained in oscine songbirds also emptasike role of experience and
750 development in the BOS recognition. In the casthefzebra finch that produces a short
751 song, neural song replay during sleep has beerpieted as the bird ‘dreaming’ of his
752 song (Dave & Margoliash, 2000). Such neural somgasecould also be involved in the

753 developmental learning process of this acousticadifDerégnaucourt et al., 2005).
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To some extent, the voice could be considered asrdrodiment of self social contexts,
and developmental changes in the voice patternditnéghance the development of
consciousness and self-awareness in humans andbpyosiso in other animals. The
acoustic parameters of the vocalizations couldigeminformation about personal identity
but it could also inform about the internal statehe producer. Like in mammals, stress
can induce vocal changes in the vocalizations afsbiFor example, in the zebra finch,
acoustic parameters of the contact calls are neatifiollowing the injection of
corticosterone, considered a stress hormone (Rgrak, 2012). Playback experiments
have shown that finches can perceive acousticrdiffees between stressed and non-
stressed contact calls. Moreover, in breeding pplayback of stressed contact calls from
the sexual partner induces an increase of corgomsé (Perez et al., 2015). Also, we do
not know to what extent the vocalizations can bagformed without losing information
such as the coding of individuality or the emotiocntent.

The role of experience is also important in theternof vocal labeling shown in several
species of parrots. The representational use ohdeéaidentity labels represents an
interesting parallel to humans and the apparenesstéty for these vocal labels in
maintaining group cohesion may lie at the rootefévolution of complex communication
and cognition systems. Experiments in spectaclediets have suggested that these birds
have a mental representation of at least theirlfamembers because they use different
labels for them (Wanker et al., 2005). In this domanany interesting questions still
remain unanswered: how would a bird react whewdleal label (call of a family member)

is produced? Would it affect his behavior if tragriliar individual was absent or present?
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Field studies provide interesting tracks for futuesearch in this domain. As previously
mentioned, some experiments with broadcast of B8 B the male’s territory suggest
that its reactions could be affected by the reaatioits neighbors (Brooks & Falls, 1975).
Taking advantage of recent technological develops#rat enable both the vocal (Ter
Maat et al., 2014) and spatial (Farine et al., 2Qf&cking of different individuals in a
social network, it would be of interest to monibat only the behavior of a target individual
during song broadcast in its territory but alsosthof its different neighbors.

Finally, knowing more about sentience and awaremesmimals could influence our
decisions about our obligations to them (Broom,@0%everal species of birds are raised
in both poultry farms for meat and egg producti@md research facilities. Self-
consciousness matters from an ethical point of \sawee it can give rise to forms of
suffering above the immediate sensations of paidisiress, although understanding and
improving animal welfare can be approached withmorisidering animal consciousness
(Dawkins, 2012). Thus, the perception of self ham@rous implications for basic research,

but it may also be important for animal welfare &glslation.
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Tablelegend

Table 1. List of speciesthat were tested with the Mirror Self Recognition Paradigm.

We did not include primates in this table becadmeliterature relative to them is very

abundant and the present paper focuses on birds.clitrent consensus concerning
primates is that great apes pass the mark testea$enonkeys do not pass that test,
although they may do it after extensive trainiray feviews, see for example Anderson &

Gallup, 2011, 2015; Suddendorf and Butler, 2013).
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L egends of figures

Figure 1. Avian and mammalian brains contain homologous structures and similar
functional circuitry.(a) Midline sagittal section of a human brain shoyvimajor
structures, including those involved in generatingscious states (e.g. cortex, thalamus,
and basal ganglia).(b) Midline sagittal sectiortlgd brain of a zebra finch, a songbird.
Major neural structures are shown, including thegh mammalian homologs. Also
shown is a greatly simplified schematic of the antdorebrain pathway for song learning
(yellow arrows) involving components of the basahglia, including the striatal nucleus
Area X (‘X in filled red circle). The circular iret to right of human brain shows zebra
finch brain to scale for comparison. Adapted frodelhan & Seth, Trends in

Neurosciences 2009.

Figure 2. Relative brain size across birds and mammals. Graphs displaying the
relationship between (log) body weight and (loggibrvolume acroos various birds and
mammals (e.g. corvids, parrots, apes, dolphins,trAlepithecus and modern Homo
sapiens, pigeons and rats. Adapted from Van HorikEr&ery, Wiley Interdisciplinary

Reviews: Cognitive Science 2011.

Figure 3. Adapted version of themark test developed by Gordon Gallup with magpies
(Picapica). (A) Attempt to reach the mark with the beak; (B)ahing the mark area with
the foot; (C) touching the breast region outsidertiarked area; (D) touching other parts

of the body. Behaviours (A) and (B) entered thelymis as mark-directed behaviour;
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behaviours (C) and (D) and similar actions towarther parts of the body were considered

self-directed, but not related to the mark. Adagtech Prior et al., PLoS Biology 2008.

Figure 4. Schematic representation of the avian song control system and its auditory
inputs. The avian song system can be divided into threia dhigisions. The descending
motor pathway (shown in black) includes telenceighateas HVC and RA as well as
brainstem nuclei that drive the muscles of thersy(nXIIts) or the respiratory system
(Ram and PAm). These later two structures form pis vocal respiratory network that
also includes DM. The second division, sometimdgedahe ventral motor pathway,
consists of projections from the diencephalon arainbtem back to HVC (shown in
green). The third major division of the song systemsists of the anterior pathway (shown
in light red), which is made up of Area X, DLM, ahtMAN. The song system receives
processed auditory information from an ascendinditary pathway (shown in blue).
Areas where BOS-selective responses have beerdegtare outlined in red. Anatomical
names: DLM, medial part of the dorsolateral thatammucleus; LMAN, lateral
magnocellular nucleus of the anterior nidopalliuReld L is the primary auditory
forebrain structure in birds; Area X, Area X of tlmeedial striatum; NIf, nucleus
interfacialis of the nidopallium; RAm, nucleus mambigualis; PAm, nucleus
paraambigualus; DM, dorsomedial nucleus of theraalécular complex; CMM, caudal
medial mesopallium; CLM, caudal lateral mesopaltidield L, auditory forebrain areas
consisting of Field L1, L2, L2a, L2b and L3; Ov/Oymucleus ovoidalis; MLd, dorsal

lateral nucleus of the mesencephalon; NCM, caudadiah nidopallium; LLV, ventral
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nucleus of the lateral lemniscus; EXP, expiratitdSP, inspiration. Adapted from

Margoliash & Schmidt, Brain & Language 2010.

Figure5. Vocal labelling in spectacled parrotlets (Forpus conspicillatus). Spectrograms
of contact calls from the male Eddi interacting hwdifferent partners. (a, d, g) Eddi
interacting with his pair mate Renee, (b, e, h)ikclgracting with his offspring Ustinov
and (c, f, i) Eddi interacting with his offspringvt. (Fast Fourier Transformation (FFT)
window size: 256 pts; frequency resolution: 125 titme resolution: 8.0 ms; number of

FFTs: 500 steps). Adapted from Wanker et al., AhiBehaviour 2005.
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