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Robust layerwise C0 finite element approach based on a variable separation
method for the modeling of composite and sandwich plates

P. Vidal *, L. Gallimard, O. Polit
LEME - UPL, Univ Paris Nanterre, 50 rue de Sèvres, 92410 Ville d’Avray, France

A B S T R A C T

This paper deals with a new approach using both the variable separation and a robust C0 eight-node finite
element for the modeling of composite plates. The displacement field is approximated as a sum of separated
functions of the in-plane coordinates x, y and the transverse coordinate z. This choice yields to an iterative
process that consists of solving a 2D and 1D problem successively at each iteration. In the thickness direction,
a fourth-order expansion in each layer is considered. For the in-plane description, the main novelty consists in
the formulation of a field compatible approximation for the transverse shear strain field, referred to as the CL8
interpolation. This latter has to be adapted to the particular framework of the separated representation. It allows
us to eliminate the shear locking pathology by constraining only the z−constant transverse shear strain terms.
Numerical assessments show the absence of locking problems as well as the enhanced robustness with respect
to distorted element shapes in comparison to classical isoparametric approaches. This new CL8 plate element
provides excellent convergence rates under different boundary and loading conditions, and it yields accurate
displacements and stresses for both thick and thin composite and sandwich plates.
1. Introduction

The increasing use of composite laminates and sandwich structures
in weight-sensitive industrial applications needs the development of
appropriate robust design tools. While the 3D approach involves pro-
hibitive computational cost, composite panels are conveniently mod-
eled as two-dimensional plate/shell structures, based on geometric con-
siderations. However, complicating effects, such as anisotropy, hetero-
geneity and transverse shear compliance, call for dedicated plate/shell
models that overcome the limitation of the so-called classical models
(Kirchhoff-Love (CLPT) or Reissner-Mindlin (FSDT)).

According to published research, it is nowadays well established
that theoretical models for heterogeneous structures can be classified as
Equivalent Single Layer approach (ESL) or Layer-Wise Models (LW) (see
Ref. [1]). In the former model class, the number of unknowns is inde-
pendent of the number of layers, contrary to the latter one where the
number of unknowns increases with the number of constituting layers.
In ESL models, the classical Love-Kirchhoff (CLT, [2]), and Reissner-
Mindlin (FSDT, [3]) can be mentioned. The first one leads to inaccurate
results for composites because both transverse and normal strains are
neglected. The second one needs a shear correction factor. So, High-
order Shear Deformation Theories (HSDT) are developed to enhance
* Corresponding author.
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the kinematics with an at least parabolic transverse shear distribu-
tion ([4–6]) that may also exactly verify the stress boundary condi-
tions at the top and bottom surfaces of the laminates (Third-order the-
ory [7,8], sinus model [9]). Nevertheless, transverse shear and normal
stress continuity conditions at the interfaces between layers are vio-
lated for these ESL models. Thus, LW models aim at overcoming these
restrictions. We can mention the following contributions [5,8,10–17].
Note also the so-called variable kinematics models developed by Car-
rera and co-workers [18] through a dedicated Unified Formulation
(CUF) which encompasses these approaches within a displacement-
based or mixed formulation. As an alternative, another way to obtain
new models is based on the introduction of interface conditions into
higher-order models pertaining to the ESL or to the LW. This permits to
reduce the number of unknowns and can be viewed as Zig-Zag models
[19–22].

This above literature deals with only some aspects of the broad
research activity about models for layered structures and correspond-
ing finite element formulations. An extensive assessment of different
approaches has been made in Refs. [23–27].

From the computational point of view, the development of robust
Finite Elements (FE) is required to cope with the adopted two-
dimensional plate/shell models, see, e.g., the discussion by Mac-
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Neal [28] about the FE technology employed for Kirchhoff-Love and
Reissner-Mindlin shell models. In particular, a general, highly predic-
tive plate FE should be free from numerical pathologies that could
degrade the accuracy of the solution in case of distorted elements or
extreme thickness ratios. The most characteristic example for this lat-
ter issue is transverse shear locking, a spurious over-constraint that
dramatically underestimates the bending deformation of a thin, shear-
deformable plate element. Several techniques have been devised to
correct the transverse shear locking pathology affecting FSDT-based
plate/shell elements, most of which can be stated from hybrid-mixed
approaches [29]. The most widespread techniques are reduced inte-
gration methods, which, however, require a dedicated stabilization
for preventing spurious zero-energy modes [30], or so-called B-bar
methods [31], in which a specific constraint is used for the trans-
verse shear strain field. Different approaches have been followed
for constructing this modified strain field, such as Kirchhoff mode
[32], Assumed Natural Strain (ANS) [33,34], Mixed Interpolation of
Tensorial Components (MITC) [35], the field-consistency paradigm
[36], Discrete Shear elements [37] or Discrete Shear Gap (DSG)
[38].

Over the past years, the Proper Generalized Decomposition (PGD)
has shown interesting features in the reduction model framework [39].
It has been used in the context of separation of coordinate variables
in multi-dimensional PDEs [39]. In particular, it has been applied for
composite plates in Ref. [40] based on a Navier-type solution and
[41–43] using the FE method. The displacements are written under the
form of a sum of products of bidimensional polynomials of (x, y) and
unidimensional polynomials of z. Previous works have clearly proved
that this approach could provide quasi-3D results for such structures,
even for discriminating cases such as the consideration of the free-edge
effects [44]. Moreover, the performance of the method is not affected
by expensive computational costs occurring for LW models or 3D FEM
approach. Nevertheless, all these previous works suffer from numeri-
cal pathologies, in particular the transverse shear locking. In the par-
ticular framework of the separated representation, note that the first
alternative to overcome this drawback consists in the use of a selective
integration as carried out in Ref. [45].

In this work, we propose to take advantage of the separated repre-
sentation with higher-order expansion through the thickness to deduce
an efficient and accurate approach for the modeling of composite plates
without numerical pathologies. This study is focused on the determina-
tion of new interpolation functions for the in-plane functions. Hence,
a special transverse shear locking correction is formulated by refer-
ring to the field consistency paradigm and applied only to the con-
stant, thickness-independent part of the transverse shear strain, as the
contribution of the higher-order terms vanish naturally for thin plates.
For this, the method first proposed by Polit et al. [46] for FSDT, and
subsequently extended to a refined kinematics [47,48], is here further
extended to a high-order plate approach in conjunction with the PGD
method.

We now outline the remainder of this article. First, the classical
mechanical formulation is recalled. Then, the principles of the PGD are
briefly given in the framework of our study. The particular assumption
on the displacements yields a non-linear problem. An iterative process
based on a fixed point strategy is performed to solve this one. Then,
the new interpolation of the in-plane functions based on the field com-
patibility approach is built and it is shown how it is adapted to the
separated representation with a higher-order z-expansion. The associ-
ated discretized problems to be solved are also given. Finally, numeri-
cal results are discussed to illustrate the performance of the method. A
comprehensive investigation is proposed that concerns both the robust-
ness of the method with respect to length-to-thickness ratio and mesh
distortion, and the accuracy of the predicted displacements and stresses
for homogeneous and composite plates. Sandwich structures under a
localized pressure with a wide range of slenderness ratios are also con-
sidered.
2. Reference problem description: the governing equations

Let us consider a plate occupying the domain  = Ω × Ωz with
Ω = [0, a] × [0, b] Ωz = [−h/2, h/2] in a Cartesian coordinate (x,
y, z). The plate is defined by an arbitrary region Ω in the (x, y) plane,
located at the midplane for z = 0, and by a constant thickness h. See
Fig. 1.

2.1. Constitutive relation

The plate can be made of NC perfectly bonded orthotropic layers.
Using matrix notation, the three dimensional constitutive law of the kth
layer is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎
(k)
11

𝜎
(k)
22

𝜎
(k)
33

𝜎
(k)
23

𝜎
(k)
13

𝜎
(k)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(k)
11 C(k)

12 C(k)
13 0 0 C(k)

16

C(k)
22 C(k)

23 0 0 C(k)
26

C(k)
33 0 0 C(k)

36

C(k)
44 C(k)

45 0

sym C(k)
55 0

C(k)
66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀
(k)
11

𝜀
(k)
22

𝜀
(k)
33

𝛾
(k)
23

𝛾
(k)
13

𝛾
(k)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i.e. [𝜎(k)] = [C(k)] [𝜀(k)] (1)

where we denote the stress vector [𝜎], the strain vector [𝜀] and C(k)
ij the

three-dimensional stiffness coefficients of the layer (k).

2.2. The weak form of the boundary value problem

Using the above matrix notation and for admissible displacement
𝛿 ⃖⃗u ∈ 𝛿U, the variational principle is given by:

find ⃖⃗u ∈ U (space of admissible displacements) such that

−∫
[
𝜀(𝛿 ⃖⃗u)

]T [
𝜎( ⃖⃗u)

]
d + ∫ [𝛿u]T

[
b
]
d + ∫𝜕F

[𝛿u]T [t] d𝜕 = 0,

∀𝛿 ⃖⃗u ∈ 𝛿U (2)

where
[
b
]

and [t] are the prescribed body and surface forces applied on
𝜕F .

3. Application of the proper generalized decomposition method to
plates

In this section, for sake of conciseness, we briefly introduce the
application of the variable separation for the plate analysis that has
been developed in Ref. [43].

Fig. 1. Composite laminate and coordinate system.



3.1. The displacement and the strain field

The displacement solution (u1(x, y, z), u2(x, y, z), u3(x, y, z)) is con-
structed as the sum of N products of functions of in-plane coordinates
and transverse coordinate (N ∈ ℕ is the order of the representation)

[u] =

⎡⎢⎢⎢⎢⎣
u1(x, y, z)

u2(x, y, z)

u3(x, y, z)

⎤⎥⎥⎥⎥⎦
=

N∑
i=1

⎡⎢⎢⎢⎢⎣
f i
1(z) vi

1(x, y)

f i
2(z) vi

2(x, y)

f i
3(z) vi

3(x, y)

⎤⎥⎥⎥⎥⎦
=

N∑
i=1

⎡⎢⎢⎢⎢⎣
f i
1(z)

f i
2(z)

f i
3(z)

⎤⎥⎥⎥⎥⎦
⚬

⎡⎢⎢⎢⎢⎣
vi

1(x, y)

vi
2(x, y)

vi
3(x, y)

⎤⎥⎥⎥⎥⎦
(3)

where (f i
1, f

i
2, f

i
3) are defined in Ωz and (vi

1, v
i
2, v

i
3) are defined in Ω. The

“⚬” operator is Hadamard’s element-wise product.
In this paper, a classical eight-node FE approximation is used in Ω

and a LW description is chosen in Ωz as it is particularly suitable for the
modeling of composite structure. The strain derived from Eq. (3) is

[𝜀(u)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜀11

𝜀22

𝜀33

𝛾23

𝛾13

𝛾12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f i
1 vi

1,1

f i
2 vi

2,2

(f i
3)

′ vi
3

(f i
2)

′ vi
2 + f i

3 vi
3,2

(f i
1)

′ vi
1 + f i

3 vi
3,1

f i
1 vi

1,2 + f i
2 vi

2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where the prime stands for the classical derivative (f ′i = dfi
dz ), and ( ),𝛼

for the partial derivative.
In order to introduce the transverse shear locking correction pro-

posed in Section 4.3, the transverse shear strain field given in Eq. (4) is
split into the classical z−constant contribution 𝛾0, and a contribution 𝛾h

that depends on the thickness coordinate z and is related to high-order
terms:

[𝛾(u)] =

[
𝛾23

𝛾13

]
=
[
𝛾0
]
+
[
𝛾h
]

(5)

where [𝛾0] =

[
𝛾0
23

𝛾0
13

]
and [𝛾h] =

[
𝛾h
23

𝛾h
13

]
.

Thus, Eq. (4) can be written under the following form:

[𝜀(u)] =
N∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

[𝛾0] =
⎡⎢⎢⎣

0(f i
2)

′vi
2 + 0f i

3vi
3,2

0
(f i

1)
′vi

1 + 0f i
3vi

3,1

⎤⎥⎥⎦
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f i
1vi

1,1

f i
2vi

2,2

(f i
3)

′vi
3

[𝛾h] =
⎡⎢⎢⎣

h(f i
2)

′vi
2 + hf i

3vi
3,2

h(f i
1)

′vi
1 + hf i

3vi
3,1

⎤⎥⎥⎦
f i
1vi

1,2 + f i
2vi

2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where the following notation is retained: 0gi
j contains only the constant

part of gi
j while all z−dependency is contained in hgi

j . g stands for f ′ or

f . So, we have (f i
j )
′ = 0(f i

j )
′ + h(f i

j )
′ and f i

3 = 0f i
3 + hf i

3.

3.2. The problem to be solved

For sake of clarity, the surface forces are neglected in the develop-
ments and the weak form of the plate problem introduced in Eq. (2)
simplifies in

a( ⃖⃗u, 𝛿 ⃖⃗u) = b(𝛿 ⃖⃗u)

with

⎧⎪⎪⎨⎪⎪⎩
a( ⃖⃗u, 𝛿 ⃖⃗u) = ∫Ω∫Ωz

(
[𝜀(𝛿 ⃖⃗u)]T [C][𝜀( ⃖⃗u)]

)
dzdΩ

b(𝛿 ⃖⃗u) = ∫Ω∫Ωz

[𝛿u]T [b]dzdΩ

(7)
where [C] represents, in each layer (k), the matrix of the elastic
moduli.

Eq. (7) is solved by an iterative procedure. If we assume that the
first n functions have been already computed, the trial function for the
iteration n + 1 is written as

[
un+1] = [

un] + ⎡⎢⎢⎢⎣
f1v1

f2v2

f3v3

⎤⎥⎥⎥⎦ =
[
un] + [

f
]
⚬ [v] (8)

where (v1, v2, v3), (f1, f2, f3) are the functions to be computed and
[
un]

is the associated known set at iteration n defined by

[
un] = n∑

i=1

⎡⎢⎢⎢⎣
f i
1vi

1

f i
2vi

2

f i
3vi

3

⎤⎥⎥⎥⎦ (9)

The test function is

𝛿

⎡⎢⎢⎢⎣
f1v1

f2v2

f3v3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝛿f1v1 + f1𝛿v1

𝛿f2v2 + f2𝛿v2

𝛿f3v3 + f3𝛿v3

⎤⎥⎥⎥⎦ =
[
𝛿f
]
⚬ [v] + [𝛿v]⚬

[
f
]

(10)

with

[v] =
⎡⎢⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎥⎦
[
f
]
=

⎡⎢⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎥⎦ (11)

The test function defined by Eq. (10) and the trial function defined by
Eq. (8) are introduced into the weak form Eq. (7) to obtain the two
following equations:

a(f ⚬ v, f ⚬ 𝛿v) = b(f ⚬ 𝛿v) − a(un, f ⚬ 𝛿v) (12)

a(v ⚬ f , v ⚬ 𝛿f ) = b(v ⚬ 𝛿f ) − a(un, v ⚬ 𝛿f ) (13)

As these equations define a coupled non linear problem, a non linear
resolution strategy has to be used. Classically, a fixed point method is
carried out. An initial function f (0) is set, and at each step, the algorithm
computes a new pair (v(m+1), f (m+1)) such that

• v(m+1) satifies Eq. (12) for f set to f (m) (linear resolution on Ω)
• f (m+1) satifies Eq. (13) for v set to v(m+1) (linear resolution on Ωz)

The fixed point algorithm is stopped when

‖v(m+1) ⚬ f (m+1) − v(m) ⚬ f (m)‖‖v(0) ⚬ f (0)‖ ≤ 𝜀 (14)

where ‖A‖ =
[∫Ω∫Ωz

∑3
i=1 A2

i dxdydz
]1∕2

and 𝜖 is a small parameter to
be fixed by the user.

4. Description of the new finite element approximations for the
transverse shear strains

Based on the weak form introduced in Eq. (12) and Eq. (13), a dis-
crete representation of the functions (v, f ) must be introduced. This
section is only dedicated to the finite element approximations of the
geometry Ω and the generalized associated displacements v, defined in
the previous section. For this purpose, an eight-node quadrilateral FE
approximation is considered and associated with the new CL8 approxi-
mation for avoiding transverse shear locking problems and minimizing
the convergence rate loss for distorted meshes.



Note that the approximation of f will be given in Section 5.

4.1. The geometric approximation

The eight-node quadrilateral finite element is presented in Fig. 2.
The in-plane coordinates (x, y) are approximated on the refer-
ence bi-unit domain with respect to the reduced coordinates (𝜉, 𝜂)
by:⎧⎪⎪⎨⎪⎪⎩

x(𝜉, 𝜂) =
8∑

i=1
Nqi(𝜉, 𝜂)(x)i

y(𝜉, 𝜂) =
8∑

i=1
Nqi(𝜉, 𝜂)(y)i

(15)

where Nqi(𝜉, 𝜂) are the classical Serendipity interpolation functions, see
Appendix A.

4.2. Isoparametric interpolation

An isoparametric procedure is used and unknown functions vi(x, y)
are approximated using the same functions as the geometry, see Eq.
(15). The elementary vector of degrees of freedom (dof) associated
with one element Ωe of the mesh in Ω is denoted [qv

e]. The displace-
ment fields and the strain fields are determined from the values of [qv

e]
by[
ve
]
= [Nxy][qv

e], [e
v ] = [Bxy][qv

e] (16)

where

[e
v ]

T =
[
v1 v1,1 v1,2 v2 v2,1 v2,2 v3 v3,1 v3,2

]
The matrices [Nxy] and [Bxy] contain the interpolation functions,

their derivatives and the jacobian components.

4.3. The CL8 interpolation

The isoparametric interpolation for the transverse shear strains leads
to a locking phenomenon because of the incompatibility of the polyno-
mial spaces defined by the sum of vi

𝛼 and the in-plane derivative v3,𝛼
(𝛼 = 1, 2 for 𝛾0

13 and 𝛾0
23, respectively) [47]. The locking pathology

is associated to the z−constant part only, for higher-order contribu-
tions depend on the plate thickness and vanish naturally in the thin
plate limit. Thus, a field-compatible interpolation for the eight-node
element is constructed for the z−constant part 𝛾0 as it has been previ-
ously developed in Ref. [49] for FSDT plate elements, in Ref. [47] to
a refined plate element and in Ref. [48] in the framework of the Car-
rera’s Unified Formulation (CUF). It is recalled briefly hereafter. Then,
this deduced new interpolation is extended in the particular framework
of the separated representation where no rotation dof appears in the
kinematics.

The so-called “field compatibility” approach is based on the follow-
ing steps:

• In order to enhance the robustness of the element for distorted
shapes, the z−constant part of transverse shear strain components
𝛾0 is first written in the reduced coordinates (𝜉, 𝜂).

Fig. 2. The reference domain of the 8-node finite element.
• In order to ensure the same polynomial approximation for the in-
plane functions (v𝜉 , v𝜂) and the derivatives of the transverse dis-
placement, v3 is assumed to be cubic, introducing four supplemen-
tary dofs at the mid-side nodes.

• A linear variation of the tangential transverse shear strain compo-
nent is assumed on each side of the elementary domain, see Fig. 2.
Thus, the supplementary dof introduced at the previous step can be
expressed as a linear combination of the v𝜉 , v𝜂 and transverse dis-
placement u3 dof. Therefore, a new finite element approximation
is obtained for the transverse displacement v3. The resulting eight-
node FE will be denoted CL8 due to the Cubic and Linear approx-
imations employed for the transverse deflection and the tangential
transverse shear strain, respectively.

• The interpolation of the reduced transverse shear strain components
is defined in the following polynomial basis as the intersection sets
of monomial terms from 𝜉 and 𝜂:

(𝛾0
𝜉
) = (v𝜉) ∩ (v3,𝜉) = {1, 𝜉, 𝜂, 𝜉 𝜂, 𝜂2}

(𝛾0
𝜂 ) = (v𝜂) ∩ (v3,𝜂 ) = {1, 𝜉, 𝜂, 𝜉 𝜂, 𝜉2}

(17)

• According to the dimension of the polynomial basis, five points are
needed for each reduced transverse shear strains. These points were
choosen as indicated in Fig. 3 because this location gives the best
results in case of distorted meshes, see Refs. [49,50]. The following
finite element approximation is obtained for the reduced transverse
shear strains:

𝛾0
𝜉
(𝜉, 𝜂) =

5∑
I=1

C𝜉I(𝜉, 𝜂)𝛾0
𝜉I 𝛾0

𝜂 (𝜉, 𝜂) =
5∑

J=1
C𝜂J(𝜉, 𝜂)𝛾0

𝜂J (18)

where C𝜉I and C𝜂J are interpolation functions, see Ref. [46].
• Using the jacobian matrix, the physical transverse shear strains 𝛾0

23
and 𝛾0

13 are deduced from the reduced transverse shear strains of
Eq. (18).[
𝛾0
23(𝜉, 𝜂)

𝛾0
13(𝜉, 𝜂)

]
= [J]−1

⎡⎢⎢⎣
𝛾0
𝜂 (𝜉, 𝜂)

𝛾0
𝜉
(𝜉, 𝜂)

⎤⎥⎥⎦ (19)

From this field compatibility approach, a new interpolation of vi
1,

vi
2, and vi

3 based on Eq. (19) is deduced for the constant part of the
transverse shear strain (denoted 𝛾0 in Eq. (4)). Thus, for our particular
separated representation, it can be expressed under the two following
forms depending of the problem to be solved:

||||||||||||
[𝛾0(f ⚬ v)] =

[
𝛾0
23(𝜉, 𝜂)

𝛾0
13(𝜉, 𝜂)

]
= [Σzgam(f )][vCL8

]

or

[𝛾0(v ⚬ f )] = [ΣxyCL8
(v)][0f ]

(20)

Fig. 3. Point locations for the transverse shear strains evaluations.



where

[Σzgam(f )] =

[
0 0 0 0(f2)

′ 0 0 0 0 0f3
0(f1)

′ 0 0 0 0 0 0 0f3 0

]

[ΣxyCL8
(v)] =

[
0 0 0 v2 v3,2 0

0 v1 0 0 v3,2 0

]
CL8

and

[vCL8
] = [BCL8

xy ][qv
e] (21)

[0f ] =
[

0f1
0f ′1

0f2
0f ′2

0f3
0f ′3

]
[BCL8

xy ] contains the new interpolation functions defined previously,
it depends on C𝜉I and C𝜂J. The subscript CL8 recalls that the involved
function v is calculated with the new CL8 interpolation functions.
It is not detailed here for brevity reason, but it can be found in
Ref. [46].

5. Finite element discretization

The new discrete representation of the functions v is defined in
Section 4.3. As far as the function f is concerned, a fourth-order FE
expansion is chosen as it is particularly suitable for the modeling of
composite structures. The elementary vector of dofs associated with
one element Ωze

of the mesh in Ωz is denoted [qf
e]. The displacement

fields f e and the two parts of the strain fields [0f ], [hf ] associated

to [𝛾0] and [𝛾h] respectively, are determined from the values of [qf
e]

by[
fe
]
= [Nz][q

f
e] and [hf ] = [Bh

z ][q
f
e] , [0f ] = [B0

z ][q
f
e] (22)

where

• [hf ]
T =

[
f1

hf ′1 f2
hf ′2

hf3 f ′3
]

• [0f ] is defined in Eq. (21).

The matrices [Nz], [B0
z ], [B

h
z ] contain the 1D interpolation functions,

their derivatives and the jacobian components. Note that the constant
part of f ′1(z), f ′2(z) and f3(z) are included in [0f ], while the high-order
terms are in [

hf ].
In the two following sections, these FE representations and those

described in Section 4 are introduced in Eq. (12) and Eq. (13) to deduce
the alternative linear problems to be solved.

5.1. Finite element problem to be solved on Ω

For the sake of simplicity, the function f (m) which is assumed to be
known, will be denoted f̃ , and the function v(m+1) to be computed will
be denoted v.

Using Eq. (20), the strain, split into 2 terms in Eq. (4), can be
expressed in matrix notations as

[𝜀(̃f ⚬ v)] = [Π𝛾0 ][Σzgam (̃f )][vCL8
] + [Σz (̃f )][v] (23)

with

[Π𝛾0 ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Σz (̃f )] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f̃1 0 0 0 0 0 0 0

0 0 0 0 0 f̃2 0 0 0

0 0 0 0 0 0 f̃ ′3 0 0

0 0 0
h
f̃ ′2 0 0 0 0

h
f̃ ′3

h
f̃ ′1 0 0 0 0 0 0

h
f̃3 0

0 0 f̃1 0 f̃2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

This expression allows us to separate the dependance with respect
to the functions f and v. It can be introduced in Eq. (12) to deduce
the problem on Ω with separated integrations on Ω and Ωz. Thus, we
deduce:

a(̃f ⚬ v, f̃ ⚬ 𝛿v) = ∫Ω[𝛿v]
T [kz (̃f )][v] + [𝛿v]

T [kzvvCL8
(̃f )][vCL8

]

+ [𝛿vCL8
]T [kzvCL8v (̃f )][v]

+ [𝛿vCL8
]T [kzvCL8vCL8

(̃f )][vCL8
]dΩ (25)

with

[kz (̃f )] = ∫Ωz

[Σz (̃f )]T [C][Σz (̃f )]dz

[kzvvCL8
(̃f )] = ∫Ωz

[Σz (̃f )]T [C][Π𝛾0 ][Σzgam (̃f )]dz

[kzvCL8v (̃f )] = [kzvvCL8
(̃f )]T

[kzvCL8vCL8
(̃f )] = ∫Ωz

[Σzgam (̃f )]T [Π𝛾0 ]T [C][Π𝛾0 ][Σzgam(̃f )]dz

(26)

and

b(̃f ⚬ 𝛿v) = ∫Ω[𝛿v]T [bz (̃f )]dΩ − ∫Ω
(
[𝛿v]T [𝜎z (̃f , un)]

+ [𝛿vCL8
]T [𝜎zCL8

(̃f , un)]
)

dΩ (27)

with

[bz (̃f )] = ∫Ωz

[
f̃
]
⚬[b]dz (28)

[𝜎z (̃f , un)] = ∫Ωz

[Σz (̃f )]T [C][𝜀(un)]dz (29)

[𝜎zCL8
(̃f , un)] = ∫Ωz

[Σzgam (̃f )]T [Π𝛾0 ]T [C][𝜀(un)]dz (30)

The introduction of the finite element approximation Eq. (16) and
the new CL8 interpolation Eq. (21) in Eq. (25) and Eq. (27) of the vari-
ational Eq. (12) leads to the linear system[
Kz (̃f )

] [
qv] = [v (̃f , un)

]
(31)

where

•
[
qv] is the vector of the nodal displacements associated with the

finite element mesh in Ω,
•

[
Kz (̃f )

]
is the stiffness matrix obtained by summing the elements’

stiffness matrices[
Ke

z (̃f )
]
= ∫Ωe

[Bxy]T [kz (̃f )][Bxy] + [Bxy]T [kzvvCL8
(̃f )][BCL8

xy ]

+ [BCL8
xy ]T [kzvCL8v (̃f )][Bxy]

+ [BCL8
xy ]T [kzvCL8vCL8

(̃f )][BCL8
xy ]dΩe

•
[v (̃f ,un)

]
is the equilibrium residual obtained by summing the ele-

ments’ residual load vectors



[e
v (̃f , u

n)
]
= ∫Ωe

[Nxy]T [bz (̃f )]dΩe − ∫Ωe

[Bxy]T [𝜎z (̃f , un)]

+ [BCL8
xy ]T [𝜎zCL8

(̃f ,un)]dΩe

5.2. Finite element problem to be solved on Ωz

For the sake of simplicity, the function v(m+1) which is assumed to
be known, will be denoted ṽ, and the function f (m+1) to be computed
will be denoted f . As previously, the strain defined in Eq. (4) is written
in matrix notations as

[𝜀(ṽ ⚬ f )] = [Π𝛾0 ][ΣxyCL8
(ṽ)][0f ] + [Σxy(ṽ)][hf ] (32)

with

[Σxy(ṽ)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽ1,1 0 0 0 0 0

0 0 ṽ2,2 0 0 0

0 0 0 0 0 ṽ3

0 0 0 ṽ2 ṽ3,2 0

0 ṽ1 0 0 ṽ3,1 0

ṽ1,2 0 ṽ2,1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

[ΣxyCL8
(ṽ)] =

[
0 0 0 ṽ2 ṽ3,2 0

0 ṽ1 0 0 ṽ3,1 0

]
CL8

(34)

Note that this expression ensures the separation of the constant part
of 𝛾0 and the higher-order ones. It can be introduced in Eq. (13) to
deduce the problem on Ωz with separated integrations on Ω and Ωz.
Thus, we deduce:

a(ṽ⚬ f , ṽ ⚬ 𝛿f ) = ∫Ωz

[𝛿hf ]
T [kxy(ṽ)][hf ] + [𝛿0f ]

T [kxy0f hf (ṽ)][hf ]

+ [𝛿hf ]
T [kxyhf0f (ṽ)][0f ]

+ [𝛿0f ]
T [kxy0f0f (ṽ)][0f ]dz (35)

with

[kxy(ṽ)] = ∫Ω[Σxy(ṽ)]T [C][Σxy(ṽ)]dΩ

[kxy0f hf (ṽ)] = ∫Ω[ΣxyCL8
(ṽ)]T [Π𝛾0 ]T [C][Σxy(ṽ)]dΩ

[kxyhf0f (ṽ)] = [kxy0f hf (ṽ)]
T

[kxy0f0f (ṽ)] = ∫Ω[ΣxyCL8
(ṽ)]T [Π𝛾0 ]T [C][Π𝛾0 ][ΣxyCL8

(ṽ)]dΩ

(36)

and

Fig. 4. Regular meshes for
b(ṽ ⚬ 𝛿f ) = ∫Ωz

[𝛿f ]T [bxy(ṽ)]dz − ∫Ωz

(
[𝛿hf ]

T [𝜎xyhf (ṽ, u
n)]

+ [𝛿0f ]
T [𝜎xy0f (ṽ, u

n)]
)

dz (37)

with

[bxy(ṽ)] = ∫Ω
[
ṽ
]
⚬ [b]dΩ (38)

[𝜎xyhf (ṽ, u
n)] = ∫Ω[Σxy(ṽ)]T [C][𝜀(un)]dΩ

[𝜎xy0f (ṽ, u
n)] = ∫Ω[ΣxyCL8

(ṽ)]T [Π𝛾0 ]T [C][𝜀(un)]dΩ
(39)

The introduction of the finite element approximation Eq. (22) in Eq.
(35) and Eq. (37) of the variational Eq. (13) leads to the linear system[
Kxy(ṽ)

]
[qf ] =

[f (ṽ, un)
]

(40)

where

•
[
qf ] is the vector of the nodal displacements associated with the

finite element mesh in Ωz,
•

[
Kxy(ṽ)

]
is the stiffness matrix obtained by summing the elements’

stiffness matrices[
Ke

xy(ṽ)
]
= ∫Ωze

[Bh
z ]

T [kxy(ṽ)][Bh
z ] + [B0

z ]
T [kxy0f hf (ṽ)][B

h
z ]

+ [Bh
z ]

T [kxyhf0f (ṽ)][B
0
z ] + [B0

z ]
T [kxy0f0f (ṽ)][B

0
z ]dze

•
[f (ṽ, un)

]
is the equilibrium residual obtained by summing the ele-

ments’ residual load vectors[e
f (ṽ, u

n)
]
= ∫Ωze

[Nz]
T [bxy(ṽ)]dze − ∫Ωze

(
[Bh

z ]
T [𝜎xyhf (ṽ,u

n)]

+ [B0
z ]

T [𝜎xy0f (ṽ,u
n)]

)
dze

6. Numerical results

In this section, several numerical benchmark tests available in open
literature are presented in order to evaluate the accuracy and robust-
ness of this new F.E approach in the framework of a separated repre-
sentation. A first set of problems involving a simple homogeneous and
isotropic plate is considered to assess the performance of the approach,
i.e., the convergence rate for thin and thick plates, and the sensitivity
with respect to distorted element shapes; these latter tests are conducted
on a square plate with distorted mesh and a circular plate. Then, lami-
nated composite and sandwich plates are analyzed to show the accuracy
of both displacements and stresses. Global and localized pressures are
used to show the performance of the separated variable in conjunction
with the new CL8 interpolation functions.
a quarter of the plate.



Fig. 5. Transverse displacement with respect to slenderness ratio S.

Fig. 6. Convergence of the transverse displacement for two length-to-thickness ratios.

comments are confirmed: the convergence rate of the full-integrated
In this section, two approaches based on the separated represen-
tation with a fourth-order expansion in the thickness direction are
assessed:

VS-LD4/ISO: full-integrated isoparametric element (3 × 3 Gauss
points for the whole stiffness matrix)
VS-LD4/CL8: CL8 approximation

Note that only one element per layer is used in the subsequent test
cases.

6.1. The transverse shear locking phenomenon

The sensitivity to the transverse shear locking must be evaluated
using the same mesh for different length to thickness ratios. The locking
occurs if this ratio influences the convergence velocity: more the plate
is thin, more the convergence velocity is slow and refined mesh must
be used to reach the asymptotic value.

Therefore, the following test is considered:

geometry: square plate a × a and thickness e = 10−n with n ∈ {0, 4}
boundary conditions: simply supported on all sides, uniform trans-
verse load p0
materials: isotropic material with E = 10.92 and 𝜈 = 0.3
mesh: regular mesh with N = 2, 4, 8, 16 (see Fig. 4)
results: the transverse displacement at the center of the plate for
z = 0,
Fig. 7. Clamped square plate used for mes
reference value is obtained by Kirchhoff-Love theory (D =
E

12(1−𝜈2) ).

Ua
3(a∕2, a∕2, 0) = 0.00406 p0

a4

h3 D
For this test case, two couples are built to recover the solution, even

if only one couple is sufficient to obtain the displacement value with
accuracy. To assess the sensitivity to the transverse shear locking of the
present approach, the results are shown in two different ways:

• Constant mesh, varying slenderness ratio

A coarse regular mesh with N = 2 elements is considered for the
quarter plate (see Fig. 4) and the results are given for varying length-
to-thickness ratios S = a/h. It can be inferred from Fig. 5 that the
full-integrated isoparametric element suffers a very strong locking as
the plate becomes thin (S ≥ 102). On the contrary, the CL8 element is
free from transverse shear locking and provide the reference Kirchhoff-
Love values with good accuracy. The discrepancy for S ≤ 102 in Fig. 5
between present F.E and the Kirchhoff-Love solution is due to the inad-
equation of this model in the semi-thick to thick range.

• Convergence analysis for a thin or thick plate

The convergence curves of the transverse displacement at the plate’s
center with respect to the mesh density are shown in log-log scale in
Fig. 6 for various length-to-thickness ratios (S = 10, 103). The 3D elas-
ticity solution is chosen as a reference one for S = 10. The previous
h sensitivity and meshes for s = 0, 4, 12.



ISO element is shown to strongly degrade as the length-to-thickness
ratio S increases, a behavior that clearly indicates the presence of the
transverse shear locking pathology. For a thick plate (S = 10), the CL8
methodology improves the accuracy for coarse meshes. For a thinner
mesh, the error rate becomes very small and are also due to round-
ing error. Note that the strictly non-monotone convergence of the CL8
approach is due to the separated unknowns method. Despite this fea-
ture, the performance of the present approach is slightly improved by
the proposed correction.

6.2. The distorsion tests

In this section, the sensitivity of the present FE approach to the mesh
distortion is illustrated on two test cases widely used in open literature,
namely the square and circular plate.

6.2.1. Square isotropic plate test
This test, see Fig. 7, is often used to investigate the mesh sensitivity

in plate bending problems [51]. The following datas are considered:

geometry: square plate of length a = 100 and thickness h = 1;
boundary conditions: clamped and submitted to a concentrated
load at the center F3 = 178.5714;
materials: isotropic material with E = 10.92 104 and 𝜈 = 0.3
mesh: N = 2 for the quarter of the plate, using the parameter s ∈
{0, 4, 8, 12} defining the distorsion of the mesh,
result: displacements U3 at the center for z = 0,
reference values: Kirchhoff-Love solution, given by U3 =
0.0056 F3

L2

h3 D = 1 with D = E
12(1−𝜈2) .

In this test, the distorted meshes are characterized by the param-
eter s defining the coordinates of the mid-node of the quarter plate
(a/4 + s, a/4 + s). Note that an undistorted mesh corresponds to (s = 0),
i.e. x1 = x2 = a/4. Two distorded meshes (s = 4, 12) and the regu-
lar mesh (s = 0) are presented in Fig. 7 and the most distorted one is
obtained for s = 12. For this mesh, the coordinates of the center node
are (37, 37) while the middle point coordinates of the straight line con-
necting the two corner nodes are (37.5, 37.5). It is the most distorded
mesh which can be built. The transverse displacement is presented in
Table 1. 5 couples are built. For the regular mesh, a discrepancy of 2.5%
is obtained for the maximum deflection while the error is always less
than 10% for all the distorted meshes. This CL8 F.E. is very robust with
respect to distorsion sensitivity on this test and the accuracy is signif-
icantly improved with respect to the ISO approach. In fact, this latter
induces an error rate of more than 80% regardless of the distorsion
level.

6.2.2. Circular isotropic plate
This test is also presented in order to evaluate the sensitivity to mesh

distorsion and the effect of different boundary conditions. The following
data are considered:

geometry: circular plate with radius R = 5, two thicknesses
h = 1. and 0.1;
boundary conditions: simply supported (SA-2) avoiding only trans-
verse displacement, and clamped (ENC); uniform transverse load

Table 1
Clamped square plate results.

s 0. 4. 8. 12.

U3 VS-LD4/CL8 0.975 0.940 0.922 0.900
U3 VS-LD4/ISO 0.224 0.197 0.152 0.109
Fig. 8. The finite element discretisations (N = 3, 12, 28) of the circular plate.

of 10−4

materials: isotropic material with E = 1.7472 107 and 𝜈 = 0.3
mesh: N = 1; 3; 12; 28 for the quarter of the circular plate,
see Fig. 8
result and location: displacements U3 at the center,
reference values are the Kirchhoff-Love solutions.

The results are summarized in Tables 2 and 3 for the present sepa-
rated variable approach using isoparametric and CL8 approximations.
For the small thickness h = 0.1, VS-LD4/ISO exhibits transverse shear
locking for both boundary conditions and convergence is very slow
while convergence velocity of the F.E based on CL8 approximation are
not sensitive to thickness. The new approximation in the separated rep-
resentation drives to a higher convergence velocity. In fact, a N = 3
and N = 12 mesh are sufficient to recover accurate results for SA-2 and
ENC, respectively (error of about 1% or less).

6.3. The homogeneous tests

The present issue is focused on the convergence of displacement
and stresses predicted by the proposed CL8 element for a plate bending
problem. The benchmark problem is defined as follows:

geometry: square plate of length a = 0.1 and length-to-thickness
ratios S = a

h = 2, 5, 10, 100;
boundary conditions: simply supported on all sides with a
bi-sinusoidal transverse distributed load on the top surface

Table 2
Tranverse displacement for circular plate - h = 1.

N VS-LD4/CL8 % VS-LD4/ISO %

ENC 3D ref. solution: 0.715E-09
1 5.946E-10 16.8% 3.975E-10 44.4%
3 6.862E-10 4.0% 6.618E-10 7.4%
12 7.013E-10 1.9% 6.787E-10 5.1%
28 7.134E-10 0.2% 7.085E-10 0.9%

SA-2 3D ref. solution: 0.258E-8
1 2.470E-09 4.3% 2.031E-09 21.3%
3 2.580E-09 0.0% 2.498E-09 3.2%
12 2.576E-09 0.1% 2.479E-09 3.9%
28 2.580E-09 0.0% 2.572E-09 0.3%

Table 3
Tranverse displacement for circular plate - h = 0.1.

N VS-LD4/CL8 % VS-LD4/ISO %

ENC 3D ref. solution: 0.61147e-6
1 6.307E-08 89.7% 6.595E-09 98.9%
3 5.647E-07 7.6% 3.209E-07 47.5%
12 6.010E-07 1.7% 3.849E-07 37.1%
28 6.060E-07 0.9% 5.454E-07 10.8%

SA-2 3D ref. solution: 0.24895E-5
1 2.237E-06 10.2% 2.977E-07 88.0%
3 2.488E-06 0.1% 1.472E-06 40.9%
12 2.488E-06 0.0% 1.625E-06 34.7%
28 2.485E-06 0.2% 2.251E-06 9.6%



Fig. 9. Isotropic square plate under mechanical load; convergence for displacement and stresses for S = 2 (left) and S = 100 (right).

e

p3(x, y, z = h
2 ) = p0 sin 𝜋x

a sin 𝜋y
b

materials: isotropic material with E = 73 GPa and 𝜈 = 0.34
mesh: N = 1, 2, 4, 8, 16 is used for the quarter of the plate
results: displacements and stresses are made non-dimensional
according to

U1 = U1
E h2

p0 a3 ; U3 = U3
100 E h3

p0 a4 ; 𝜎11 = 𝜎11
1

p0 S2 ; 𝜎i3 = 𝜎i3
1

p0 S

location: displacements and stresses are calculated at the following
points

U1 ∶ (0, b∕2,−h∕2); U3, 𝜎11, 𝜎33 ∶ (a∕2, b∕2,h∕2); 𝜎13 ∶ (0, b∕2, 0)

reference values: the three dimensional exact elasticity results are
obtained as in Ref. [52].

The convergence behavior for displacements and stresses of the CL8
lement is shown in Fig. 9, where both very thick (S = 2) and thin
Table 4
Convergence study - three layers (0⚬∕90⚬∕0⚬) − S = 100.

model N ū(h∕2) v(−h∕2) w(0) 𝜎

2 0.29% 0.58% 0.18% 5.
VS-LD4/CL8 4 0.00% 0.02% 0.01% 1.

8 0.01% 0.00% 0.00% 0.

2 1.18% 0.37% 4.83% 6.
VS-LD4/ISO 4 0.04% 0.60% 0.48% 0.

8 0.01% 0.13% 0.04% 0.

Table 5
Three layers (0⚬∕90⚬∕0⚬) − N = 8.

S model ū(h∕2) v(−h∕2) w(0)

4 VS-LD4/CL8 −0.0097 0.0228 2.0059
error 0.04% 0.00% 0.00%
VS-LD4/ISO −0.0097 0.0228 2.0059
error 0.00% 0.00% 0.00%
exact −0.0097 0.0228 2.0059

10 VS-LD4/CL8 −0.0074 0.0111 0.7530
error 0.05% 0.01% 0.00%
VS-LD4/ISO −0.0074 0.0111 0.7530
error 0.00% 0.00% 0.00%
exact −0.0074 0.0111 0.7530

100 VS-LD4/CL8 −0.0068 0.0068 0.4347
error 0.01% 0.00% 0.00%
VS-LD4/ISO −0.0068 0.0068 0.4345
error 0.01% 0.13% 0.04%
exact −0.0068 0.0068 0.4347
(S = 100) plates are considered. The FE error is defined with respect to
the three dimensional exact solution from Ref. [52]. The convergence
rate is very satisfactory regardless of the length-to-thickness ratio. As
expected, the convergence rate of the displacements is higher, and a
N = 4 mesh is suitable. On the contrary, a more refined mesh is required
for the transverse shear stress and a N = 8 drives to an error rate of
about 1%. Nevertheless, the performance of this FE is rather very good.

6.4. Laminated composite test: three-layered plates (0⚬∕90⚬∕0⚬)

As the present approach based on the separated representation is
particularly suitable for composite structures, a simply-supported lami-
nated plate submitted to a bi-sinusoidal pressure is considered. The test
aims at showing the performance of the proposed correction for such
structures. It is described below:
11(h∕2) 𝜎22(−h∕6) 𝜎12(h∕2) 𝜎13(0) 𝜎23(0)

18% 5.40% 4.84% 1.60% 5.10%
32% 1.29% 1.24% 0.72% 2.21%
33% 0.32% 0.31% 0.15% 0.52%

09% 8.79% 4.98% 146.32% 642.09%
06% 1.28% 1.59% 60.22% 210.62%
20% 0.07% 0.38% 19.76% 122.48%

𝜎11(h∕2) 𝜎22(−h∕6) 𝜎12(h∕2) 𝜎13(0) 𝜎23(0)

0.8037 −0.5581 −0.0512 0.2568 0.2187
0.36% 0.33% 0.29% 0.34% 0.68%
0.8034 −0.5581 −0.0512 0.2566 0.2196
0.32% 0.32% 0.32% 0.26% 1.11%
0.8008 −0.5563 −0.0511 0.2559 0.2172

0.5928 −0.2892 −0.0289 0.3584 0.1232
0.37% 0.33% 0.28% 0.31% 0.33%
0.5925 −0.2891 −0.0289 0.3588 0.1266
0.32% 0.32% 0.32% 0.43% 3.13%
0.5906 −0.2882 −0.0288 0.3573 0.1228

0.5410 −0.1814 −0.0214 0.3941 0.0824
0.33% 0.32% 0.31% 0.15% 0.52%
0.5403 −0.1807 −0.0214 0.4727 0.1843
0.20% 0.07% 0.38% 19.76% 122.48%
0.5393 −0.1808 −0.0214 0.3947 0.0828



Fig. 10. Mesh N = 22 sr(18) (left) - localized pressure (right).

Fig. 11. Distribution of ū1 (left), ū2 (middle) and ū3 (right) along the thickness - S = 2 - sandwich.
geometry: rectangular composite cross-ply plate (0⚬∕90⚬∕0⚬) with
b = a. All layers have the same thickness. S = a

h ∈ {4, 10, 100}
boundary conditions: simply-supported plate on all sides subjected
to a bi-sinusoidal pressure q(x, y) = q0 sin 𝜋x

a sin 𝜋y
b

material properties:
EL = 25 GPa, ET = 1 GPa, GLT = 0.2 GPa,

GTT = 0.5 GPa, 𝜈LT = 𝜈TT = 0.25
where L refers to the fiber direction, T refers to the transverse
direction.
mesh: N = 8, only one quarter of the plate is meshed.
results: The results are made nondimensional using:

u = u1(0, b∕2, z) ET
hq0S3 , v = u2(a∕2, 0, z) ET

hq0S3 ,

w = u3(a∕2, b∕2, z)100ET
S4hq0
Fig. 12. Distribution of 𝜎11 (left), 𝜎22 (middle) and
𝜎𝛼𝛼 = 𝜎𝛼𝛼(a∕2, b∕2, z)
q0S2 , 𝜎12 = 𝜎12(0, 0, z)

q0S2

𝜎13 = 𝜎13(0, b∕2, z)
q0S

, 𝜎23 = 𝜎23(a∕2, 0, z)
q0S

reference values: the three-dimensional exact elasticity results are
obtained as in Ref. [53].

First, a convergence study is carried out to compare the CL8 and
ISO approach. The results are given in Table 4 for a thin plate. For
the CL8 approximation, the results show that a N = 8 mesh provides
converged FEM results (displacements and stresses) with respect to
the exact solution, thus confirming the performances for the isotropic
plate. For the ISO approach, it should be noted that the convergence
of the transverse shear stresses is very low, while those of the dis-
placements are good. The error rate is more than 100% for a N = 8
𝜎12 (right) along the thickness - S = 2 - sandwich.



Fig. 13. Distribution of 𝜎13 (left), 𝜎23 (middle) and 𝜎33(right) along the thickness - S = 2 - sandwich.

Table 6
Sandwich plate - localized pressure - N = 22 sr(18).

S model ū(h∕2) v(−h∕2) w(0) 𝜎11(h∕2) 𝜎22(h∕2) 𝜎12(h∕2) 𝜎13(0) 𝜎13 max 𝜎23(0)

2 VS-LD4/CL8 −0.0014 0.0041 1.3033 1.5283 0.2219 −0.0069 0.0061 −0.0067 0.0032
error 0.46% 0.21% 0.15% 0.67% 0.01% 0.07% 0.18% 1.34% 0.27%
exact −0.0014 0.0041 1.3052 1.5181 0.2219 −0.0069 0.0062 −0.0068 0.0031

4 VS-LD4/CL8 −0.0007 0.0026 0.4857 0.5670 0.0745 −0.0045 0.0076 0.0076 0.0017
error 0.27% 0.00% 0.02% 0.83% 0.09% 0.11% 0.04% 0.04% 0.24%
exact −0.0007 0.0026 0.4858 0.5624 0.0746 −0.0045 0.0076 0.0076 0.0017

10 VS-LD4/CL8 −0.0006 0.0009 0.1362 0.1699 0.0235 −0.0020 0.0097 0.0097 −0.0004
error 0.40% 1.09% 0.32% 0.15% 0.02% 0.90% 0.69% 0.69% 1.38%
exact −0.0006 0.0009 0.1366 0.1701 0.0235 −0.0020 0.0098 0.0098 −0.0004

40 VS-LD4/CL8 −0.0006 0.0003 0.0520 0.0902 0.0129 −0.0010 0.0103 0.0103 −0.0007
error 0.14% 0.75% 0.12% 0.02% 0.38% 0.58% 0.02% 0.02% 1.68%
exact −0.0006 0.0003 0.0521 0.0902 0.0128 −0.0010 0.0103 0.0103 −0.0007
mesh. This test illustrates the efficiency of the proposed correction on
all results. This error rate becomes less than 1% using the new approx-
imation.

Based on the previous study, a N = 8 mesh is used for the analy-
sis of the three-layer case with different slenderness ratios, S = 4, 10,
100. The results using both the ISO and CL8 approaches are summa-
rized in Table 5. The accuracy of the results is very satisfactory for both
displacements and stresses, excepted for the transverse shear stresses
for moderately thick to thin plates (from 3.13% to 122% with a ISO
approach). To overcome this drawback, the new CL8 approximation is
used advantageously. The error rate decreases significantly (less than
0.52%).

6.5. Sandwich plate under localized pressure

In this section, the analysis of a sandwich plate with local effects is
carried out for a wide range of slenderness ratios. The test is detailed
below:

geometry: square sandwich plate with length-to-thickness ratios S ∈
{2, 4, 10, 100, 1000}. The thickness of each face sheet is h

10 .
Table 7
Sandwich plate - localized pressure - N = 22 sr(18).

S model ū(h∕2) v(−h∕2) w(0)

VS-LD4/CL8 −6.35e-04 2.83e-04 4.66e-02
0.07% 0.10% 0.05%

100 VS-LD4/ISO −6.35e-04 2.84e-04 4.65e-02
0.12% 0.43% 0.13%

exact −6.35e-04 2.83e-04 4.66e-02

VS-LD4/CL8 −6.35e-04 2.75e-04 4.55e-02
0.15% 0.30% 0.14%

1000 VS-LD4/ISO −6.35e-04 2.75e-04 4.53e-02
0.17% 0.37% 0.40%

exact −6.36e-04 2.76e-04 4.55e-02
boundary conditions: simply-supported plate subjected to a local-
ized pressure q(x, y) = q0 applied on a square area with a size of
a/10 × a/10 at the plate center (see Fig. 10 right).
material properties: The material of the face sheet is the same as
in Section 6.4.

The core material is transversely isotropic with respect to z and is
characterized by:

Exx = Eyy = 0.04 GPa, Ezz = 0.5 GPa, Gxz = Gyz = 0.06 GPa,

Gxy = 0.016 GPa, 𝜈xz = 𝜈yz = 0.02, 𝜈xy = 0.25

mesh: N = 22 with a space ratio of 18, denoted sr(18) is used for
the quarter of the plate (see Fig. 10 left). 6 × 6 elements are used
for the pressure area.
results: displacements and stresses are made non-dimensional as in
Section 6.4.
reference values are obtained with 450 terms in the Fourier series
([53]). The applied pressure is shown in Fig. 10 right.
𝜎11(h∕2) 𝜎22(h∕2) 𝜎12(h∕2) 𝜎13(0) 𝜎23(0)

8.76e-02 1.12e-02 −8.84e-04 1.02e-02 −7.34e-04
0.05% 0.11% 0.12% 0.47% 0.99%
8.77e-02 1.12e-02 −8.86e-04 1.01e-02 −7.51e-04
0.03% 0.00% 0.41% 0.07% 1.38%
8.77e-02 1.12e-02 −8.82e-04 1.01e-02 −7.41e-04

8.75e-02 1.08e-02 −8.65e-04 1.00e-02 −7.45e-04
0.04% 0.01% 0.31% 0.13% 0.25%
8.74e-02 1.08e-02 −8.65e-04 1.07e-02 −2.43e-03
0.15% 0.10% 0.36% 6.52% 226.86%
8.75e-02 1.08e-02 −8.68e-04 1.01e-02 −7.43e-04



The number of couples built by the present approach VS-LD4/CL8
varies from five for S = 1000 to twenty-one for S = 2. The num-
ber of couples increases with the thickness of the structure. For the
very thick case (S = 2), the distributions of the displacements and
stresses through the thickness are presented in Figs. 11–13. It can be
inferred from these figures that the present approach is in excellent
agreement with the reference solution despite the complexity of the
variations of these quantities. For the in-plane displacement, a zig-zag
effect occurs and the variation through the core is not strictly linear.
We also notice that the in-plane stresses 𝜎𝛼𝛼 , 𝛼 = 1, 2 are influenced
by the localized pressure, especially in the upper layer. The evolu-
tion of 𝜎11 through the thickness becomes highly non-linear in this
layer. Moreover, a strong non-symmetric distribution appears. This spe-
cific behavior is well-captured. For the transverse shear and normal
stresses, both the upper and lower conditions and the interface con-
tinuity ones are satisfied. The particular behavior of 𝜎13 in Fig. 13
(left) is due to the slenderness ratio and the localized load. The maxi-
mum value is located in the upper layer where high variations occur.
Only layerwise-type approaches have the capability to represent such
phenomena.

In Table 6, it is confirmed that the results perform very well with
respect to the reference solution. The maximum error rate remains less
than 1.6%. Again, a particular attention is paid on the results for very
thin case (S = 100, 1000), see Table 7. The limitation of the isopara-
metric approach is clearly shown. While the quality of the ISO results
is affected by the slenderness ratio, the accuracy of the transverse shear
Appendix A. Finite element approximations

Appendix A.1 The eight node interpolation

The interpolation functions on the elementary domain are defined as f

∀(𝜉, 𝜂) ∈ [−1, 1]2, p(𝜉, 𝜂) =
8∑

i=1
Nqi(𝜉, 𝜂) pi with

Nq1(𝜉, 𝜂) = −1
4
(1 − 𝜉)(1 − 𝜂)(1 + 𝜉 + 𝜂) Nq2(𝜉, 𝜂) = −1

4
(1 + 𝜉)(1 − 𝜂)(1 − 𝜉

Nq3(𝜉, 𝜂) = −1
4
(1 + 𝜉)(1 + 𝜂)(1 − 𝜉 − 𝜂) Nq4(𝜉, 𝜂) = −1

4
(1 − 𝜉)(1 + 𝜂)(1 + 𝜉

Nq5(𝜉, 𝜂) =
1
2
(1 − 𝜉2)(1 − 𝜂) Nq6(𝜉, 𝜂) =

1
2
(1 + 𝜉)(1 − 𝜂2)

Nq7(𝜉, 𝜂) =
1
2
(1 − 𝜉2)(1 + 𝜂) Nq8(𝜉, 𝜂) =

1
2
(1 − 𝜉)(1 − 𝜂2)

References
stresses can be improved by the CL8 approximation without any mesh
refinement.

7. Conclusion

In this paper, an approach based on the separation of variables for
the modeling of composite/sandwich plates in conjunction with a new
FE approximation of only the constant part of the transverse shear strain
is proposed. It requires to extend the so-called CL8 FE in this particu-
lar framework. Thus, a locking-free approach is derived. The robust-
ness and accuracy of the proposed method is assessed by referring to
some recommended tests, namely, (i) convergence behavior for thin
and thick plates under various boundary and loading conditions, (ii)
test cases involving distorted meshes. The numerical results confirm the
superiority of the proposed FE in comparison to classical isoparametric
approaches with full integrations: it is free of transverse shear locking
and is less sensitive to distorted element shapes, showing a high con-
vergence rate for both displacements and stresses. The model performs
also very well for both laminated composite and sandwich plates under
global or localized loads. Moreover, the excellent performance of this
new approach is shown for very thick to very thin structures. Thus, this
new FE has proven and enhanced robustness. It can be hence used to
model a broad class of problems.

Based on these convincing results, the method could be extended to
shell structures.
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