Q. Wang, T. Li, and X. Zeng, Gigacycle fatigue behavior of high strength aluminum alloys, Procedia Engineering, vol.2, issue.1, pp.65-70, 2010.
DOI : 10.1016/j.proeng.2010.03.007

URL : https://doi.org/10.1016/j.proeng.2010.03.007

R. Mishra and Z. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports, vol.50, issue.1-2, pp.1-78, 2005.
DOI : 10.1016/j.mser.2005.07.001

C. Bathias, L. Drouillac, L. Francois, and P. , How and why the fatigue S???N curve does not approach a horizontal asymptote, International Journal of Fatigue, vol.23, pp.143-51, 2001.
DOI : 10.1016/S0142-1123(01)00123-2

D. Ni, Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites, International Journal of Fatigue, vol.55, pp.64-73, 2013.
DOI : 10.1016/j.ijfatigue.2013.05.010

M. Grujicic, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, Journal of Materials Engineering and Performance, vol.32, issue.6, pp.855-64, 2011.
DOI : 10.1016/S0013-7944(03)00009-2

M. Ilman, . Kusmono, and P. Iswanto, Fatigue crack growth rate behaviour of friction-stir aluminium alloy AA2024-T3 welds under transient thermal tensioning, Materials & Design, vol.50, pp.235-278, 2013.
DOI : 10.1016/j.matdes.2013.02.081

M. Iordachescu, Fsw ? characteristic flaws in aluminium alloys joints, Metalurgia Int, vol.14, pp.135-143, 2009.

E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society. Section B, vol.64, issue.9, p.747, 1951.
DOI : 10.1088/0370-1301/64/9/303

C. He, Fatigue damage evaluation of low-alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue, International Journal of Fatigue, vol.61, pp.297-303, 2014.
DOI : 10.1016/j.ijfatigue.2013.10.018

Q. Wang, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, vol.24, issue.12, pp.1269-74, 2002.
DOI : 10.1016/S0142-1123(02)00037-3

N. Phung, Very high cycle fatigue of copper: Evolution, morphology and locations of surface slip markings, International Journal of Fatigue, vol.63, pp.68-77, 2014.
DOI : 10.1016/j.ijfatigue.2014.01.007

URL : https://hal.archives-ouvertes.fr/hal-00985474

H. Mughrabi, Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis, International Journal of Fatigue, vol.57, pp.2-8, 2013.
DOI : 10.1016/j.ijfatigue.2012.06.007

H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, International Journal of Fatigue, vol.28, issue.11, pp.1501-1509, 2006.
DOI : 10.1016/j.ijfatigue.2005.05.018

M. Zhu, Very high cycle fatigue behavior of a low strength welded joint at moderate temperature, International Journal of Fatigue, vol.40, pp.74-83, 2012.
DOI : 10.1016/j.ijfatigue.2012.01.014

D. Wagner, Fatigue crack initiation detection by an infrared thermography method, Fatigue & Fracture of Engineering Materials & Structures, vol.1211, issue.4, pp.12-21, 2010.
DOI : 10.1111/j.1460-2695.2009.01410.x

I. Marines-garcia, Fatigue crack growth from small to long cracks in VHCF with surface initiations, Int J Fatigue, vol.29, pp.9-112072, 2007.

Y. Sato, Microstructural evolution of 6063 aluminum during friction-stir welding, Metallurgical and Materials Transactions A, vol.77, issue.77, pp.2429-2466, 1999.
DOI : 10.1016/0025-5416(70)90084-4

J. Su, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Materialia, vol.51, issue.3, pp.713-742, 2003.
DOI : 10.1016/S1359-6454(02)00449-4

S. Chowdhury, Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch, Materials Science and Engineering: A, vol.527, issue.21-22, pp.21-226064, 2010.
DOI : 10.1016/j.msea.2010.06.012

C. Genevois, A. Deschamps, and P. Vacher, Comparative study on local and global mechanical properties of 2024 T351, T6 and 5251 O friction stir welds, 2024.
URL : https://hal.archives-ouvertes.fr/hal-00139867

B. Boyce, P. Reu, and C. Robino, The constitutive behavior of laser welds in 304L stainless steel determined by digital image correlation, Metallurgical and Materials Transactions A, vol.207, issue.8, pp.2481-92, 2006.
DOI : 10.1115/1.1345526

C. Wang, Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron, International Journal of Fatigue, vol.58, pp.152-159, 2014.
DOI : 10.1016/j.ijfatigue.2013.02.009

URL : https://hal.archives-ouvertes.fr/hal-00832474

L. Murr, G. Liu, and J. Mcclure, A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium, Journal of Materials Science, vol.33, issue.5, pp.1243-51, 1998.
DOI : 10.1023/A:1004385928163

O. Hatamleh, Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints, Materials Science and Engineering: A, vol.492, issue.1-2, pp.168-76, 2008.
DOI : 10.1016/j.msea.2008.03.017

W. Woo, Prediction of hardness minimum locations during natural aging in an aluminum alloy 6061-T6 friction stir weld, Journal of Materials Science, vol.56, issue.525, pp.6302-6311, 2009.
DOI : 10.1016/S0261-3069(97)00062-9

Y. Hong, Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels, International Journal of Fatigue, vol.58, pp.144-51, 2014.
DOI : 10.1016/j.ijfatigue.2013.02.023

Z. Huang, Effect of carburizing treatment on the ???fish eye??? crack growth for a low alloyed chromium steel in very high cycle fatigue, Materials Science and Engineering: A, vol.559, pp.790-797, 2013.
DOI : 10.1016/j.msea.2012.09.025

URL : https://hal.archives-ouvertes.fr/hal-01420501

K. Shiozawa, Y. Morii, and S. Nishino, Subsurface Crack Initiation and Propagation Mechanism under the Super-Long Fatigue Regime for High Speed Tool Steel (JIS SKH51) by Fracture Surface Topographic Analysis, JSME International Journal Series A, vol.49, issue.1, pp.1-10, 2006.
DOI : 10.1299/jsmea.49.1

P. Lukas, Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region, Mater Sci Eng a-Struct Mater Prop Microstruct Process, vol.528, pp.22-237036, 2011.

S. Stanzl-tschegg and B. Schonbauer, Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime, International Journal of Fatigue, vol.32, issue.6, pp.886-93, 2010.
DOI : 10.1016/j.ijfatigue.2009.03.016

C. Bathias, Coupling effect of plasticity, thermal dissipation and metallurgical stability in ultrasonic fatigue, International Journal of Fatigue, vol.60, pp.18-22, 2014.
DOI : 10.1016/j.ijfatigue.2013.06.004

URL : https://hal.archives-ouvertes.fr/hal-01421692

C. Müller-bollenhagen, M. Zimmermann, and H. Christ, Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite, International Journal of Fatigue, vol.32, issue.6, pp.936-978, 2010.
DOI : 10.1016/j.ijfatigue.2009.05.007

F. Smith, A. Emery, and K. As, Stress Intensity Factors for Semicircular Cracks: Part 2???Semi-Infinite Solid, Journal of Applied Mechanics, vol.34, issue.4, p.953, 1967.
DOI : 10.1115/1.3607862

P. Paris, H. Tada, and J. Donald, Service load fatigue damage ? a historical perspective, International Journal of Fatigue, vol.21, pp.35-46, 1999.
DOI : 10.1016/S0142-1123(99)00054-7

P. Pawliska, H. Richard, and P. Diekmann, The behaviour of cracks in elastic-plastic materials under plane normal and shear loadings, International Journal of Fracture, vol.47, issue.3, pp.43-54, 1993.
DOI : 10.1007/BF00032524