I. Babu-s-ska and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, vol.15, issue.10, pp.1597-1615, 1978.
DOI : 10.1002/nme.1620121010

P. Ladev-e-eze and D. Leguillon, Error Estimate Procedure in the Finite Element Method and Applications, SIAM Journal on Numerical Analysis, vol.20, issue.3, pp.485-509, 1983.
DOI : 10.1137/0720033

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International Journal for Numerical Methods in Engineering, vol.7, issue.18, pp.337-357, 1987.
DOI : 10.1016/B978-0-12-747255-3.50049-6

I. Babu-s-ska, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj, A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method, Int. J. Num. Meth. Engrg, pp.38-4207, 1995.

I. Babu-s-ska, T. Strouboulis, S. K. Gangaraj, K. Copps, and D. K. Datta, A posteriori estimation of the error estimate, Advances in Adaptive Computational Methods in Mechanics, Studies in Applied Mechanics, pp.155-197, 1998.

T. Strouboulis, I. Babu-s-ska, D. K. Datta, K. Copps, and S. K. Gangaraj, A posteriori estimation and adaptative control of the error in the quantity of interest. Part 1: A posteriori estimation of the error in the von mises stress and the stress intensity factor, Comp. Meth. Appl. Mech. Engrg, pp.180-261, 2000.

P. Ladev-e-eze, P. Rougeot, P. Blanchard, and J. P. Moreau, Local error estimators for finite element linear analysis, Computer Methods in Applied Mechanics and Engineering, vol.176, issue.1-4, pp.231-246, 1999.
DOI : 10.1016/S0045-7825(98)00339-9

S. Prudhomme and J. T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Computer Methods in Applied Mechanics and Engineering, vol.176, issue.1-4, pp.313-331, 1999.
DOI : 10.1016/S0045-7825(98)00343-0

J. Peraire and A. Patera, Bounds for Linear???Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement, Advances in Adaptive Computational Methods, pp.199-216, 1998.
DOI : 10.1016/S0922-5382(98)80011-1

R. Rannacher and F. T. Stuttmeier, A feed-back approach to error control in finite element methods: application to linear elasticity, Computational Mechanics, vol.19, issue.5, pp.434-446, 1997.
DOI : 10.1007/s004660050191

P. Ladev-e-eze and P. Rougeot, New advances on a posteriori error on constitutive relation in f.e. analysis, Computer Methods in Applied Mechanics and Engineering, vol.150, issue.1-4, pp.239-249, 1997.
DOI : 10.1016/S0045-7825(97)00089-3

P. Ladev-e-eze, J. P. Pelle, and P. Rougeot, ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS, Engineering Computations, vol.8, issue.1, pp.69-80, 1991.
DOI : 10.1002/nme.1620240206

W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quarterly of Applied Mathematics, vol.5, issue.3, pp.261-269, 1947.
DOI : 10.1090/qam/25902

I. Babu-s-ska, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj, and K. Copps, Validation of a posteriori error estimators by numerical approach, Int. J. Num. Meth. Engrg, pp.37-1073, 1994.

I. Babu-s-ska, T. Strouboulis, and S. K. Gangaraj, A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems with particular reference to the behavior near the boundary, Int. J. Num. Meth. Engrg, pp.40-2521, 1997.

P. Ladev-e-eze, J. L. Gastine, P. Marin, and J. P. Pelle, Accuracy and optimal meshes in finite element computation for nearly incompressible materials, Comp. Meth. Appl. Mech. Engrg, pp.94-303, 1992.

P. Coorevits, J. P. Dumeau, and J. P. Pelle, Error estimator and adaptivity for three-dimensional finite element analysis, Advances in Adaptive Computational Methods in Mechanics, Studies in Applied Mechanics, 1998.
DOI : 10.1016/s0922-5382(98)80025-1

I. Babu-s-ska and T. Strouboulis, The Finite Element Method and its Reliability, 2001.