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Adaptive meshing for local
quality of FE stresses

E. Florentin, L. Gallimard, J-P. Pelle and P. Rougeot
LMT-Cachan, Cachan, France

Abstract

Purpose – In this paper, we focus on the quality of a 2D elastic finite element analysis.

Design/methodology/approach – Our objective is to control the discretization parameters in order
to achieve a prescribed local quality level over a dimensioning zone. The method is based on the
concept of constitutive relation error.

Findings – The method is illustrated through 2D test examples and shows clearly that in terms of
cost, this technique provides an additional benefit compared to previous methods.

Research limitations/implications – The saving would be even more significant if this mesh
adaptation technique were applied in three dimensions. Indeed, in 3D problems, the computing cost is
vital and, in general, it is this cost that sets the limits.

Practical implications – This tool is directly usable in the design stage.

Originality/value – The new tool developed guarantees a local quality level prescribed by the user.

Keywords Finite element analysis, Error analysis, Meshes

Paper type Research paper

1. Introduction
The primary objective in developing discretization error estimators is to control the
quality of a finite element analysis. However, the information thus obtained (evaluation
of the global error, contribution of each element to the global error) enables one to
develop procedures for adapting the calculation parameters in order to achieve the
desired overall level of accuracy while reducing calculation costs. Naturally, such
procedures have been developed mainly for linear analysis and, in this context, they
have led to very robust mesh adaptation techniques (Ladevèze et al., 1991; Coorevits
et al., 1996). Parameter adaptation techniques for nonlinear and dynamic problems can
be found in Ladevèze and Oden (1998), Aubry et al. (1999) and Gallimard and Pelle
(2002). In recent years, estimators allowing the control of the quality of local quantities
(stresses, displacements, contour integrals) have been proposed by different teams
(Rannacher and Suttmeier, 1997; Peraire and Patera, 1998; Prudhomme and Oden, 1999;
Cirak and Ramm, 1998; Ladevèze et al., 1999; Strouboulis et al., 2000; Stein et al., 2001).

Naturally, parameter adaptation techniques have been associated with these
estimators (Rannacher and Suttmeier, 1997; Prudhomme and Oden, 1999; Stein et al.,
2001). The objective of this paper is to propose a mesh adaptation technique for linear
problems which enables one to guarantee the quality of the stresses calculated in a
dimensioning zone while reducing the cost of the finite element analyses. This
technique is based on the local estimator developed at LMT-Cachan (Ladevèze and
Rougeot, 1997; Ladevèze et al., 1999; Florentin et al., 2002). In the first part of this paper,
after having reviewed the classical formulation of a linear elasticity problem, we
outline the basic principles of the error in constitutive relation and its application to the



estimation of the local quality of the calculated finite element stresses. In the second
part, we review the mesh adaptation technique which enables one to control the global
quality of a finite element analysis. In the third part, we present the modifications
which we made to this technique in order to guarantee a given quality level in a zone
specified by the user (a priori a dimensioning zone) while reducing the cost of the finite
element analysis. First examples of applications to two-dimensional problems are
presented. They clearly show the interest and the effectiveness of the proposed method.

2. Error in constitutive relation for linear problems
2.1 The reference problem
Let us consider an elastic structure occupying a domain V bounded by ›V. The actions
of the environment on the structure are represented by:

. a prescribed displacement Ud over a part ›1V of the boundary;

. a prescribed volume force density f
d

in V; and
. a prescribed surface force density Fd over ›2V ¼ ›V2 ›1V.

The Hooke’s operator of the material is denoted by K. Then, the problem can be
formulated as follows:

Find a displacement field Uex and a stress field sex defined over V which verify:
. the kinematic constraints:

Uexj›1V ¼ Ud ð1Þ

. the equilibrium equations: for any U* zero over ›1VZ
V

Tr½sex1ðU* Þ� dV ¼

Z
V

f
d
U* dVþ

Z
›2V

FdU* dS ð2Þ

. the constitutive relation:

sex ¼ K1ðUexÞ ð3Þ

where 1(U) represents the linearized strain associated with the displacement. (Uex,sex)
is the solution pair of this reference problem. ðUh;shÞ is the approximate finite element
solution pair of this reference problem.

2.2 Discretization error
We want to know the quality of the discretized solution ðUh;shÞ as an approximation
of the solution ðUex;sexÞ of the corresponding continuous problem. Classically, one
defines a measure of the solution error over the structure as:

eh ¼ kehku;V ¼ kUex 2 Uhku;V ¼ ksex 2 shks;V ð4Þ

where k†k†;V represents the energy norm of † over V.
eh provides only some global scalar energy information on the quality of the finite

element calculation. It could be interesting to decompose eh taking into account the
finite element partition introduced, and to break down the error into contributions from
each element E of the mesh th:



e2
h ¼

E[th

X
e2
h;E ð5Þ

with:

e2
h;E ¼ kehku;E ¼ kUex 2 Uhku;E ¼ ksex 2 shks;E ð6Þ

Remark. eh,E is a local error measure over element E: eh;E ¼ 0 , sh ¼ sex in E.

2.3 Error in constitutive relation
The discretization error is estimated through the error in constitutive relation. The
concept of error in constitutive relation relies on splitting the equations into two
groups:

. the admissibility equations: constraints and equilibrium (1, 2); and

. the constitutive relation (3).

The constitutive relation has a particular status. In practice, this is often the least
reliable equation. An admissible pair ðÛ; ŝÞ verifying the first group of equations is
constructed. Then, the non-verification of the constitutive relations enables one to
define eCR. This estimate is a sum of elementary contributions:

e2
CR ¼

E[E

X
e2

CR;E

e2
CR;E ¼

Z
E

Tr½ðŝ2K1ðÛ ÞÞK21ðŝ2K1ðÛ ÞÞ� dE ¼ kŝ2K1ðÛ Þk
2
s;E ð7Þ

2.4 Implementation of the error in constitutive relation
2.4.1 The finite element displacement method. Since the pair ðUh;shÞ is not admissible,
in order to use an error in constitutive relation it is necessary to construct an admissible
pair ðUh;shÞ starting from the finite element solution and the problem’s data.

. In the framework of a displacement finite element method of the conforming type,
the displacement field Uh is admissible. For the sake of simplicity, one chooses:

Û ¼ Uh in V ð8Þ

. However, the stress field sh is not admissible (i.e. it does not verify the
equilibrium exactly). The techniques used for the construction of an equilibrated
stress field sh starting from ŝ and the problem’s data are detailed in Ladevèze
et al. (1991), Ladevèze and Rougeot (1997) and Florentin et al. (2002).

2.5 Relationship with the solution error
With this choice of admissible fields, the error in constitutive relation can be connected
to the solution error through Prager-Synge’s (1947) hypercircle theorem:



e2
CR ¼ kŝ2 shÞk

2
s;V ¼ kŝ2 sexÞk

2
s;V þ ksex 2 shÞk

2
s;V ð9Þ

In particular, this theorem yields the following inequalities:

eh # eCR ð10Þ

and

ksex 2 shÞks;V # eCR ð11Þ

2.6 Local quality of the finite element solution
In Florentin et al. (2002, 2003), the quantity eCR,E is shown to be an upper bound of the
error actually made eh,E. The idea is that if one builds a better quality field ŝ than sh,
i.e. such that:

kŝ2 sexks;E ¼ Aksh 2 sexks;E with 0 # A , 1 ð12Þ

then, one obtains:

ksh 2 sexks;E # ksh 2 ŝks;E þ Aksh 2 sexks;E ð13Þ

Therefore, there exists a constant C such that:

ksh 2 sexks;E # Ckŝ2 shks;E with C ¼
1

1 2 A
ð14Þ

Since A , 1, the upper bound (14) is obtained with C $ 1. Furthermore, the smaller A
is, the closer C is to 1. The construction of ŝ; which in practice leads to equation (14), is
detailed in Ladevèze and Rougeot (1997) and Florentin et al. (2002, 2003). The stress ŝ
is obtained by an optimisation procedure over a family of stresses in equilibrium with
external forces. In Ladevèze and Rougeot (1997) and Florentin et al. (2002, 2003)
numerical tests on numerous test cases show that in practice equation (12) is verified.

3. Adapted mesh for controlling the quality of the finite element stresses
In this section, we present the methods which enable one to choose the discretization
parameters in order to achieve a given quality level. This quality can be global (but, in
this case, the practical benefits are limited) or local, in which case the discretization
obtained leads to a result of direct value to the user.

3.1 Adapted mesh for controlling the global quality of a linear calculation
The idea consists in utilizing the results of an initial finite element analysis and the
associated error estimates to determine an optimum mesh, i.e. a mesh which provides
the desired overall accuracy while minimizing the computing costs.

In short, the principle of the procedure is the following:
. one performs an initial calculation on a relatively coarse mesh t ;
. on this mesh t, one calculates the relative global error 1 as well as the

contributions 1E; and
. one uses this information to determine the characteristics of the optimum

mesh t *.



3.1.1 The optimum mesh. The optimum mesh t *, whose concept was introduced in
Ladevèze (1977) and Ladevèze and Leguillon (1981), is such that:

1* ¼ 1d ðprescribed accuracyÞ 1*
E uniform over t * ð15Þ

This definition is equivalent to having an evenly distributed error. This criterion does
not necessarily correspond to minimum computing costs. A criterion which does not
have this drawback, introduced in Ladevèze et al. (1986), consists in taking the
following definition:

1* ¼10 ðprescribed accuracyÞ N*; the number of elements of t*; is minimum ð16Þ

This is the criterion that we choose, since it leads naturally to minimum computing
costs.

3.1.2 Determination of the optimum mesh. The idea, in order to determine the
characteristics of the optimum mesh t*, is to calculate for each element E of the mesh
t a size modification coefficient:

rE ¼
h*
E

hE
ð17Þ

where hE is the current size of element E and h*
E the (unknown) size the elements of t*

must have in the zone corresponding to element E in order to achieve optimality
(Figure 1).

Thus, the determination of the optimum mesh is equivalent to the determination of
the initial mesh of a map of size modification coefficients.

The calculation of the coefficients rE is based on the rate of convergence of the error:

1 ¼ OðhqÞ ð18Þ

where q depends on the type of element being used, but also on the regularity of the
exact solution of the problem being considered. In this case, in order to predict the maps
of optimum sizes, one writes that the ratio of the contributions to the error is:

rqE ¼
h*
E

hE

� �q

¼
1*
E

1E
ð19Þ

where 1*
E is the contribution of the elements of t* located in the zone of E:

Figure 1.
Element sizes
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1*
E ¼

E*,E

X
12

E*

24 351
2

ð20Þ

The square of the global relative error on mesh t can be evaluated by:

1* 2 ¼
E

X
1*
E

2
¼

E

X
r2q
E 12

E ð21Þ

and the number of elements of mesh t* by:

N* ¼
E

X 1

rdE
ð22Þ

where d is the dimension of the space. (In the 2D case being considered, d ¼ 2:)
Thus, the problem to be solved is:

Minimize ðN* Þ with
E

X
r2q
E 12

E ¼ 12
d ð23Þ

One can show (Ladevèze and Pelle, 2004) that the resolution of such a problem yields
the size map {rE}E1t , with:

rE ¼
1

1
q

d

1
2

2qþd

E
E

P
1

2d
2qþd

E

" # 1
2q

ð24Þ

3.1.3 Optimality check. Having determined the optimum sizes and constructed the
optimum mesh t *, one performs a new finite element calculation. In order to assess the
effectiveness of the different procedures used, it is necessary to check the optimality of
mesh t *.

A first verification consists simply in calculating the discretization error 1* of
mesh t *. If this error is not close to the desired accuracy, the constructed mesh is
certainly not optimum.

A simple technique to check optimality consists in determining a new size map for a
prescribed accuracy equal to the accuracy 1* actually obtained. For an accuracy 1*, if
the mesh is strictly optimum, this procedure must yield size modification coefficients
such that:

;E* [ t* ; r*
E ¼ 1 ð25Þ

In actual situations, such mesh quality is never achieved. Indeed:
. the size prediction assumes that the elements are regular (equilateral triangles),

which is not true in practice; and
. the mesh generator does not always achieve the prescribed size map exactly.

These mesh adaptation methods with global target error can be found in Ladevèze et al.
(1991) and Coorevits et al. (1994, 1996).



3.2 Adapted mesh for controlling the local quality of a linear calculation
The mesh obtained by adaptation guarantees a given global error over the structure.
This enables one to obtain a better-quality finite element analysis by setting a lower
target error. Here, we propose an approach which still aims to achieve a global error
level, but, in addition, also guarantees a given quality level in a given zone v. Thus, the
user can obtain an optimized mesh which provides, at minimum cost, local information
with a given accuracy. This is done by first setting the element sizes in zone v in order
to achieve the desired local quality, then minimizing the number of elements in the
whole structure.

The principle of the procedure is the following:
. one performs an initial calculation on a relatively coarse mesh t ;
. on this mesh t, one calculates the relative global error 1 as well as the relative

local error eloc(v) over zone v; and
. one uses this information to determine the characteristics of the local-optimum

mesh t*
loc:

The local relative error eloc(v) over v is defined by the ratio:

elocðvÞ ¼
kŝ2 shks;v

kŝþ shks;v
ð26Þ

In particular, over a zone corresponding to an element E,

elocðEÞ ¼
kŝ2 shks;E

kŝþ shks;E
ð27Þ

Remark. The local relative error which one would want to define is:

gelocðEÞelocðEÞ ¼
ksex 2 shks;E

ksex þ shks;E
ð28Þ

but, since sex is not known, only eloc(E) can be defined. In practice, eloc(E) is a good
estimate of gelocðEÞelocðEÞ.

3.2.1 Local-optimum mesh. A local-optimum mesh t*
loc is such that:

1* ¼ 1d ðprescribed global accuracyÞ e*
locðvÞ ¼ eloc;d ðprescribed local accuracyÞ

N*; the number of elements of t*
loc; is minimum e*

locðE Þ is uniform over v
ð29Þ

This criterion leads naturally to minimum cost while guaranteeing good-quality
information for all elements in zone v. In a mesh thus optimized, each element E *

within zone v has a local error equal to eloc,d.
One should note that:

e*
locðEÞconstant ;E [ v ) e*

locðEÞ ¼ e*
locðvÞ ¼ eloc;d ;E [ v ð30Þ



This means that each local error has the prescribed value eloc,d over each element of
zone v.

eloc,d is fixed by the user. 1d is a parameter to determine by numerical experiments.
The first tests seem to show that choosing 1d two or three times larger than eloc,d leads
to good results.

3.2.2 Determination of the local-optimum mesh. Thus, the determination of the
local-optimum mesh t*

loc is equivalent to the determination over the initial mesh of a
size modification map with size rE. In fact, this is a simple modification of the global
case. Indeed, the optimization is performed in two steps:

(1) one sets the sizes in v; and

(2) one minimizes the number of elements over V2 v:

The calculation of the coefficients rE is based on the convergence rate of the error:

1 ¼ OðhqÞ ð31Þ

where q depends on the type of element being used, but also on the regularity of the
exact solution of the problem. In this case, in order to predict the optimum size maps,
one writes:

rqE ¼
h*
E

hE

� �q

¼
1*
E

1E
ð32Þ

where 1E are the global relative contributions over an element E of mesh t and 1*
E are

the corresponding quantities defined over t*: 1*
E is the contribution to the global

relative error of the elements of t* located in zone E:

1*
E ¼

E*,E

X
12

E*

24 351
2

ð33Þ

In addition:

1*
E ¼

kŝ* 2 s*
hks;E

kŝ* þ s*
hks;V

¼
kŝ* 2 s*

hks;E

kŝ* þ s*
hks;E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

e*
locðEÞ

¼eloc;d

kŝ* þ s*
hks;E

kŝ* þ s*
hks;V|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

C

ð34Þ

The term C is evaluated by assuming that the energy does not change significantly
from one mesh to the other:

C ¼
kŝ* þ s*

hks;E

kŝ* þ s*
hks;V

<
kŝþ shks;E

kŝþ shks;V
ð35Þ

Using equalities (32) and (34), one obtains the size modification coefficients for the
elements E located on v:

rqE ¼
eloc;dC

1E
<

eloc;d

elocðEÞ
ð36Þ

i.e. finally:



rE ¼
eloc;d

elocðEÞ

� �1
q

;E [ v ð37Þ

Then, in order to determine the rE in zone V2 v; one proceeds in the same way as for
the determination of the global-optimum mesh.

Thus, the problem to be solved is:

Minimize ðN * Þ with
E

P
r2q
E 12

E ¼ 12
d

rE ¼
eloc;d

elocðEÞ

� �1
q

;E [ v

8>>><>>>: ð38Þ

Introducing the known quantity ~12
d :

~12
d ¼ 12

d 2
E[v

X
r2q
E 12

E ð39Þ

the problem to be solved remains of the same type as for the global-optimum mesh:

Minimize ðN* Þ with
E[V2v

X
r2q
E 12

E ¼ ~12
d ð40Þ

Thus, one gets the size map for the elements located outside zone v.

rE ¼
~1

1
q

d

1
2

2qþd

E
E

P
1

2d
2qþd

E

" # 1
2q

;E [ V2 v ð41Þ

3.2.3 Optimality check. Having determined the optimum sizes and constructed the
optimum mesh t*

loc; one performs a new finite element calculation. In order to assess
the effectiveness of the different procedures carried out, one must check the optimality
of mesh t*

loc:
The first verification consists calculating the discretization errors 1* and e*

locðvÞ of
mesh t*

loc: If these errors are not close to the desired accuracies 1d on the global level
and eloc(v),d on the local level, the constructed mesh is certainly not optimum.

A simple technique in order to check optimality consists in determining a new size
map for a prescribed accuracy equal to the accuracy actually obtained 1* and e*

locðvÞ.
If the mesh is exactly optimum, this procedure must yield size modification coefficients
such that:

;E* [ t*
loc; r*

E ¼ 1 ð42Þ

3.3 Examples of implementation
3.3.1 Beam in bending. This example illustrates the method on a beam subjected to
bending.



The part is dimensioned using the yield stress in the most highly solicited zone. One is
seeking an optimum mesh in order to obtain good-quality stresses in the zone where the
mechanical loading is maximum. The geometry and the loading are shown in Figure 2.

A coarse and regular initial mesh is constructed in order to get an idea of the most
highly solicited zones at low cost. The zone with the highest stresses, as expected, is
the central zone. We are more particularly interested in the compression zone (Figure 2).

For this initial mesh, the local (for the zone of interest) and global quality levels are
given in Table I.

The first step consists seeking the mesh which yields 2 percent global error with the
minimum number of elements. The corresponding mesh is shown in Figure 3.

The local and global quality levels obtained with this mesh are given in Table II.
Now, let us consider a mesh with the same local quality level over the zone of

interest, i.e. 1 percent. We seek the mesh which guarantees this local quality level for all
elements in the zone and, at the same time, yields 5 percent global error while, of
course, minimizing the number of elements used. The corresponding mesh is shown in
Figure 4.

The local and global quality levels obtained with this mesh are given in Table III.
In order to obtain this mesh, we performed an optimality check. Figure 5 shows the

optimality histogram obtained on the local optimum mesh. On this graph, the number

Figure 2.
The initial mesh

Global error 6.60 percent
Number of elements 60
Number of nodes 151
Local error 3.99 percent

Table I.
The corresponding
quality levels

Figure 3.
The global-optimum mesh

Global error 1.58 percent (2 percent prescribed)
Number of elements 299
Number of nodes 666
Local error 0.9 percent (for information)

Table II.
Global-optimum mesh:
quality

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400510585466&iName=master.img-002.jpg&w=173&h=75
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of elements of t* with a given r*
E is plotted against r*

E : One can see that r*
E is

sufficiently close to 1.
3.3.2 Load cell. This example concerns a load cell. The loading applied in order to

study the deformation of the structure consists in a fixed condition in the lower right
and a uniform pressure applied on the upper left (Figure 6).

One can observe that one zone follows a quasi-translation movement with respect to
the other (Figure 6). In fact, four elastic pin joints forming a trapezoid enable this
displacement to occur. For the purpose of dimensioning, we are interested in the most
highly solicited joint alone (zone of interest: lower right).

For this loading and the initial mesh, one obtains the initial quality level shown in
Figure 7.

Now, let us consider the global-optimum mesh (Figure 8). This mesh, of course, is
more refined in the four elastic joints and less refined elsewhere.

If one changes the objective and seeks to guarantee a local quality level as well, one
obtains the mesh of Figure 9.

Figure 4.
The local-optimum mesh

Global error 4.61 percent (5 percent prescribed)
Number of elements 130
Number of nodes 299
Local error 0.8 percent (1 percent prescribed)

Table III.
Local-optimum mesh:

quality

Figure 5.
Optimality check for the

local-optimum mesh

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400510585466&iName=master.img-004.jpg&w=169&h=61
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3.3.3 Elastic connection. The elastic connection being studied is part of a test assembly
(Figure 10) designed by Sébastien Le Loch (LMT-Cachan) for a series of experiments in
cooperation with EADS-LV and CNES. The test piece is loaded in four-point bending,
and the dimensioning of the elastic joints was carried out using a simple yield stress

Figure 6.
Deformed shape

Figure 7.
Load cell: initial mesh

Figure 8.
Load cell: global-optimum
mesh

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400510585466&iName=master.img-006.jpg&w=276&h=141
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criterion. Again, a local-optimum mesh obtained through the technique described in
this paper is compared to the global-optimum mesh.

The boundary conditions are shown in Figure 11.
A coarse mesh is defined, which enables one to find the zone (or zones) with

the highest stresses. The most highly loaded zone is, of course, the center zone with the

Figure 9.
Load cell: local-optimum

mesh

Figure 10.
Test assembly

Figure 11.
Boundary conditions and

deformed shape
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smallest cross-section. The different quality levels obtained on this mesh are shown in
Figure 12.

The quality level obtained for the global-optimum mesh is shown in Figure 13.
The quality level obtained for the local-optimum mesh is shown in Figure 14.

4. Conclusions
The test cases which were carried out show several things. First of all, we have a new
tool which guarantees a local quality level prescribed by the user. This tool is directly
usable in the design stage. Then, in terms of cost, this technique provides an additional
benefit compared to previous methods. Indeed, remeshing methods based on a global
objective, by creating an adapted mesh, result in considerable time savings; remeshing
methods based on a local objective, as we saw, result in a saving in terms of number of
elements. This time saving is significant, particularly in the design phase, where it
allows for several constructive solutions to be tested. The saving would be even more

Figure 13.
Connection:
global-optimum mesh

Figure 12.
Connection: initial mesh
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significant if this mesh adaptation technique were applied in three dimensions. Indeed,
in 3D problems, the computing cost is vital and, in general, it is this cost that sets the
limits.
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