N. Kikuchi and J. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, Philadelphia: SIAM, 1988.
DOI : 10.1137/1.9781611970845

P. Wriggers, Finite element algorithms for contact problems, Archives of Computational Methods in Engineering, vol.33, issue.4, pp.1-49, 1995.
DOI : 10.1137/1.9781611970845

G. Bayada, J. Sabil, and T. Sassi, Neumann?Dirichlet algorithm for unilateral contact problem: convergence results, CR Acad Sci, vol.335, pp.381-387, 2002.

C. Eck and B. Wohlmuth, Convergence of a Contact-Neumann Iteration for the Solution of Two-Body Contact Problems, Mathematical Models and Methods in Applied Sciences, vol.3, issue.08, pp.1103-1121, 2003.
DOI : 10.1108/02644409910251292

I. Babus-?ka and W. Rheinboldt, A-posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, vol.15, issue.10, pp.1597-615, 1978.
DOI : 10.1002/nme.1620121010

P. Ladevèze and D. Leguillon, Error Estimate Procedure in the Finite Element Method and Applications, SIAM Journal on Numerical Analysis, vol.20, issue.3, pp.485-509, 1983.
DOI : 10.1137/0720033

O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International Journal for Numerical Methods in Engineering, vol.7, issue.18, pp.337-57, 1987.
DOI : 10.1016/B978-0-12-747255-3.50049-6

P. Wriggers and O. Scherf, Different a posteriori error estimators and indicators for contact problems, Mathematical and Computer Modelling, vol.28, issue.4-8, pp.4-8437, 1997.
DOI : 10.1016/S0895-7177(98)00133-2

URL : https://doi.org/10.1016/s0895-7177(98)00133-2

P. Coorevits, P. Hild, and J. Pelle, A posteriori error estimation for unilateral contact with matching and non-matching meshes, Computer Methods in Applied Mechanics and Engineering, vol.186, issue.1, pp.65-83, 2000.
DOI : 10.1016/S0045-7825(99)00105-X

A. Rieger and P. Wriggers, Adaptive methods for frictionless contact problems, Computers & Structures, vol.79, issue.22-25, pp.2197-208, 2001.
DOI : 10.1016/S0045-7949(01)00072-4

F. Louf, J. Combe, and J. Pelle, Constitutive error estimator for the control of contact problems involving friction, Computers & Structures, vol.81, issue.18-19, pp.1759-72, 2003.
DOI : 10.1016/S0045-7949(03)00200-1

URL : https://hal.archives-ouvertes.fr/hal-01689633

F. Louf, L. Gallimard, and J. Pelle, Un estimateur d'erreur en relation de comportement pour les probl??mes d'impact, Revue europ??enne de m??canique num??rique, vol.15, issue.6, pp.699-728, 2006.
DOI : 10.3166/remn.15.699-727

V. Bostan and W. Han, A posteriori error analysis for finite element solutions of a frictional contact problem, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.9-12, pp.1252-74, 2006.
DOI : 10.1016/j.cma.2005.06.003

B. Wohlmuth, An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes, Journal of Scientific Computing, vol.28, issue.1, pp.25-45, 2007.
DOI : 10.1007/978-3-642-56767-4

J. Haslinger, I. Hlavacek, and J. Necas, Numerical methods for unilateral problems in solid mechanics, Handbook of numerical analysis, Part 2, 1996.
DOI : 10.1016/S1570-8659(96)80005-6

P. Verpeaux, A. Millard, T. Charras, and A. Combescure, A Modern Approach of Computer Codes for Structural Analysis, 1989.

D. Saxcé and G. , A generalisation of Fenchel's inequality and its applications to the constitutive laws, CR Acad Sci, vol.314, pp.125-134, 1992.

D. Saxcé, G. Feng, and Z. , The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms, Mathematical and Computer Modelling, vol.28, issue.4-8, pp.225-270, 1998.
DOI : 10.1016/S0895-7177(98)00119-8

W. Prager and J. Synge, Approximations in elasticity based on the concept of function space, Quarterly of Applied Mathematics, vol.5, issue.3, pp.261-270, 1947.
DOI : 10.1090/qam/25902

L. Gallimard, A constitutive relation error estimator based on traction-free recovery of the equilibrated stress, International Journal for Numerical Methods in Engineering, vol.23, issue.7-8, pp.460-82, 2009.
DOI : 10.1002/9781118032824

URL : https://hal.archives-ouvertes.fr/hal-01689801

P. Ladevèze, J. Pelle, and P. Rougeot, ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS, Engineering Computations, vol.8, issue.1, pp.69-80, 1991.
DOI : 10.1002/nme.1620240206

P. Ladevèze and J. Pelle, Mastering calculations in linear and non-linear mechanics. Mechanical engineering series, 2005.

L. Gallimard, P. Ladevèze, and J. Pelle, Error estimation and time-space parameters optimization for FEM non-linear computation, Computers & Structures, vol.64, issue.1-4, pp.1-4145, 1997.
DOI : 10.1016/S0045-7949(96)00164-2

P. Ladevèze and N. Moes, Adaptive control for finite element analysis in plasticity, Computers & Structures, vol.73, issue.1-5, pp.45-60, 1999.
DOI : 10.1016/S0045-7949(98)00284-3

J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering, vol.13, issue.3, pp.233-274, 1993.
DOI : 10.1137/1.9781611971057.ch5

URL : http://ftp.ccs.uky.edu/mgnet/www/mgnet/www/mgnet/papers/Mandel/bdd.ps.gz

Z. Dostál and D. Horák, Theoretically Supported Scalable FETI for Numerical Solution of Variational Inequalities, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.500-513, 2007.
DOI : 10.1137/050639454

R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorinis problem in linear elasticity, Comput Vis Sci, vol.5, pp.139-187, 2002.

G. Bayada, J. Sabil, and T. Sassi, A Neumann-Neumanndomain decomposition algorithm for the Signorini problem, Applied Mathematics Letters, vol.17, issue.10, pp.1153-1162, 2004.
DOI : 10.1016/j.aml.2003.10.010