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A new robust quadrilateral four-node variable kinematics plate element for 
composite structures

T.H.C. Le, M. D'Ottavio, P. Vidal, O. Polit

1. Introduction

The increasing use of composite laminates and sandwich structures
in engineering applications drives the need for appropriate analysis
and design tools with dedicated computational models. Based on
geometric considerations, composite panels are conveniently modeled
as two-dimensional plate/shell structures. However, complicating
effects - such as anisotropy, heterogeneity and transverse shear
compliance - call for plate/shell models that go beyond the so-called
classical models, i.e., those relying on i( ) Kirchhoff-Love assumptions
and neglecting transverse deformation (Classical Laminate Plate
Theory, CLPT), ii( ) or on Reissner-Mindlin assumptions and retaining
a merely constant transverse shear deformation through the thickness
(First-order Shear Deformation Theory, FSDT). Numerous review
papers devoted to high-order plate/shell models witness the scientific
progress in this specific topic [1–5].

A useful classification discerns Equivalent Single Layer (ESL) and
Layer-Wise (LW) models [6]: In the former model class, the number of
unknowns is independent of the number of layers constituting the
composite plate, while in the latter one, the number of unknowns
increases with the number of constituting layers. CLPT and FSDT
evidently pertain to the ESL models. ESL models that enhance the
kinematics for the transverse shear deformation while still discarding
the transverse normal deformation, are referred to as High-order Shear

Deformation Theories (HSDT). Contrary to FSDT, no numerical shear
correction factors are required in HSDT thanks to an at least parabolic
transverse shear distribution that may also exactly verify the stress
boundary conditions at the laminate's top and bottom surfaces.
Seminal examples are the third-order theory by Reddy [7] and the
sinus-model by Touratier [8]. Conventional ESL models employ a
single approximation for the displacement field through the entire
laminate's thickness; the resulting transverse strain field is continuous
across the stacked layers, which contradicts the equilibrium conditions
between adjacent plies with different material properties [9]. Zig-Zag
models are special ESL models with a piece-wise continuous displace-
ment field that allows to fulfill the interlaminar continuity conditions of
the transverse shear stresses, see, e.g., [10,11]. The review paper by
Carrera [12] offers a comprehensive discussion about the various
approaches to Zig-Zag models. In presence of highly compliant core
layers, or for accurately resolving local stress gradients whose wave-
length is comparable to the plate thickness, it is necessary to further
refine the model upon including the transverse normal deformation,
see, e.g., the early contribution by Lo et al [13] and the more recent
papers [14,15]. Retaining the full three-dimensional constitutive law is
particularly useful for coupled problems, such as those related to
thermo-mechanics [16].

In order to reduce the computational effort, it has been proposed to
limit the use of expensive high-order models to those local regions
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Variable kinematics plate model suffer transverse shear locking
also, and the first employed countermeasures consisted in a selectively
reduced quadrature [39,24,40]. Rectangular four- and nine-nodes plate
elements have been been subsequently implemented upon extending
the MITC approach to CUF-based high-order kinematics [41]. A four-
node quadrilateral plate element has been proposed by Kulikov and
Plotnikova [42] by resorting to a hybrid-mixed ANS approach in
conjunction with a variable kinematics approach formulated in terms
of Sampling Surfaces (SaS). In these works, all transverse shear strain
terms issued from the high-order kinematics are constrained according
to the adopted MITC or ANS approach. However, since high-order
shear deformation terms depend on the plate thickness and will vanish
in thin-plate limit, the locking behavior is produced by the first-order
Reissner-Mindlin kinematics only. As a matter of fact, the convergence
rates of CUF elements do not depend on the polynomial order N
defining the plate kinematics [40].

Refined two-dimensional structural models including thickness
change require special care for preventing thickness or Poisson locking,
i.e., an overly stiff bending response that is produced if the transverse
normal strain is not allowed to vary along the thickness direction [43].
Two class of remedies have been proposed for correctly resolving the
Poisson coupling along the thickness: to retain an at least linearly
varying transverse normal strain, either within an Enhanced Assumed
Strain approach pioneered by Büchter et al [44], see also [45], or
directly in the model kinematics [16]; or to modify the constitutive law
for the bending contribution by referring to a generalized plane stress
condition, as proposed, e.g., in [46].

Based on the outlined background, the present paper proposes a
four-node quadrilateral element for variable kinematics displacement-
based CUF plate models. A special transverse shear locking correction
is formulated by referring to the field consistency paradigm and applied
only to the constant, thickness-independent part of the transverse
shear strain. For this, the method first proposed by Polit et al [47] for
FSDT, and subsequently extended to a refined kinematics [16], is here
further extended to high-order plate models with arbitrary kinematics.
The resulting plate FE is implemented as User Element in the
commercial package Abaqus, along with dedicated Python plug-ins
for generating the model within the graphical interface of Abaqus.
Following the recommendations expressed by MacNeal and Harder
[48], extensive numerical tests are reported for demonstrating the
absence of spurious mechanisms and assessing the element's accuracy
for extreme thickness ratios as well as distorted meshes. The paper is
organized as follows: the CUF-based variable kinematics approach is
recalled in Section 2 and the new QC4 FE approximation is presented
in Section 3. The numerical results are discussed in Section 4, where a
comprehensive investigation is proposed that concerns the rank of the
stiffness matrix, the robustness of the element with respect to length-
to-thickness ratio and mesh distortion, as well as the accuracy of the
predicted displacements and stresses for homogeneous and composite
plates. Finally, Section 5 summarizes the main conclusions and
proposes an outlook towards further studies.

Fig. 1. Coordinates and notation used for the description of the composite plate.
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hosting the stress gradients of interest, while employing classical low-
order models for the remaining large portions of the structure. Several 
approaches have been followed for coupling heterogeneous kinematics 
and their respective Finite Element (FE) approximations, see, e.g., the 
transition element proposed by Feng and Hoa [17] within their hybrid-
mixed composite plate element formulations, the overlapping mesh 
approach based on Arlequin method [18], or the direct interface 
coupling proposed by Wenzel et al [19] on the basis of an extended 
variational formulation.

A very flexible manner for implementing such substructuring 
methods is to resort to so-called variable kinematics models and 
corresponding finite elements, as first pioneered by Reddy [20] and 
more recently systematically developed by Carrera and co-workers 
thanks to a dedicated Unified Formulation [21,22]. By virtue of an 
extensive index notation, Carrera's Unified Formulation (CUF) allows 
to implement a large number of finite plate/shell elements within a 
unique software, whose inputs provided at runtime define the actual 
plate/shell model to be used in the analysis [23]. Within CUF, classical 
displacement-based plate elements are defined through the choice of i( )
the description at laminate level (ESL or LW), (ii) whether a Zig-Zag 
function is to be used or not, and (iii) the order N of the polynomial 
expansion assumed for the displacement field. The original version of 
CUF as presented by [24] has been implemented as Abaqus User 
Element with a dedicated Python-based preprocessing tool [25]; this 
package has been successfully employed in, e.g., [26,27] and forms the 
basis of the developments proposed in this paper.

From the computational point of view, the development of robust 
Finite Elements (FE) is required to cope with the adopted two-
dimensional plate/shell model, see, e.g., the discussion by MacNeal 
[28] about the FE technology employed for Kirchhoff-Love and 
Reissner-Mindlin shell models. A general, highly predictive plate FE 
should not rely on numerical tuning coefficients, should have only six 
rigid body modes, for spurious zero-energy modes could be particularly 
detrimental, e.g., in non-linear analyses, and should be free from 
numerical pathologies that could degrade the solution's accuracy in 
case of distorted elements or extreme thickness ratios. The most 
characteristic example for this latter issue is transverse shear locking, 
a spurious over-constraint that dramatically underestimates the bend-
ing deformation of a thin, shear-deformable plate element. Several 
techniques have been devised for correcting the transverse shear 
locking pathology affecting FSDT-based plate/shell elements, most of 
which can be stated from hybrid-mixed approaches [29]. The most 
widespread techniques are reduced integration methods, which, how-
ever, require a dedicated stabilization for preventing spurious zero-
energy modes [30], or so-called B-bar methods [31], in which a specific 
constraint is used for the transverse shear strain field. Different 
approaches have been followed for constructing this modified strain 
field, such as Kirchhoff mode [32], Assumed Natural Strain (ANS)
[33,34], Mixed Interpolation of Tensorial Components (MITC) [35], 
the field-consistency paradigm [36], Discrete Shear elements [37] or 
Discrete Shear Gap (DSG) [38].



2. Variable kinematics plate model

Let us consider a multilayered plate occupying the domain
V Ω x= × {− ≤ ≤ }e e

2 3 2 in a Cartesian coordinate system
x y z x( , , ) = ( )i , see Fig. 1. Unless otherwise stated, Latin indices range
in {1, 2, 3}, Greek indices range in {1, 2} and tensorial repeated index
convention is employed. Ω is the reference surface of arbitrary shape
lying in the x x( , ) −1 2 plane located for convenience at z=0. The plate
has constant thickness e, which is composed of k N= 1, 2, … L ortho-
tropic, elastic and perfectly bonded layers, each with a thickness e k( )

and with an orientation of the material orthotropy axes defined by the
rotation angle θ k( ) about the thickness direction x z≡3 .

2.1. The weak form of the boundary value problem

The Principle of Virtual Displacement (PVD) is employed to obtain
the weak form for a displacement-based plate approximation. The
volume boundary is split as V Γ Γ∂ = ⋃u σ , where Γu is the portion with an
imposed displacement field and Γσ is the portion with imposed
tractions; without loss of generality we shall neglect body forces and
pose Γ Ω x= ∂ × {− ≤ ≤ }u

e e
2 3 2 and Γ Ω= × {− , }σ

e e
2 2 . The weak formu-

lation of the problem thus reads:
For all admissible virtual displacement δu δ∈i , find the displace-

ment field u ∈i (space of admissible displacements) such that:

∫ ∫δu σ u x δu t x− ϵ ( ) ( ) d + d = 0
V

ij l ij m i
Γ

i i α
σ (1)

where ti are the surface loads at Γσ , a bar denoting prescribed values;
δuϵ ( )ij l is the compatible virtual strain tensor and σ u( )ij m the stress

tensor defined by means of the linear elastic constitutive law in terms of
the actual strains uϵ ( )rs m .

2.2. Variable kinematics assumptions

Carrera's Unified Formulation (CUF) is a technique that permits to
implement a large number of bi-dimensional models in a unified
manner by means of an extensive use of a compact index notation
[24,23]. Within the displacement-based approach, all plate theories are
defined in CUF by specifying i( ) whether the displacement field is
described in Equivalent Single Layer (ESL) or Layer-Wise (LW)
manner, and ii( ) the order N of the polynomial expansion used for
approximating the behavior along the thickness direction. The two-
dimensional variable kinematics plate model is generally formulated
upon separating the in-plane variables xα from the thickness direction
z, along which the displacement field is a priori postulated by known
functions F(z):

u x z F z u x( , ) = ( ) ( ),i α τ i ατ (2)

where τ N= 0, 1,…, is the summation index and the order of expansion
N is a free parameter of the formulation. In this work N can range from
1 to 4, in agreement with the classical CUF implementation [24].

In order to deal with both ESL and LW descriptions within a unique
notation, it is convenient to refer to a layer-specific thickness coordi-
nate z z z∈ { , }k b

k
t

k( ) ( ) that ranges between the z-coordinates of the
bottom (subscript b) and top (subscript t) planes delimiting the k th

layer, see Fig. 1. Eq. (2) can thus be formally re-written for each layer
as

u x z F z u x F z u x F z u x( , ) = ( ) ( ) + ( ) ( ) + ( ) ( )i
k

α k t k i
k

α b k i
k

α r k i
k

α
( ) ( ) ( ) ( )

t b r (3)

with τ t b r= , , and r N= 2, … . The displacement field ui for the whole
multilayered stack is then defined through an opportune assembly
procedure of the layer-specific contributions ui

k( ), which depends on the
ESL or LW description.

In an ESL approach, the thickness functions are defined as Taylor-
type expansion and only one variable uiτ is used for the whole
multilayer, i.e., the layer index k( ) in Eq. (3) may be dropped off and

the following thickness functions are used:

F F z F z r N= 1, = , = ( = 2, … − 1)b t
N

r
r (4)

The ESL description can be enhanced by including the Zig-Zag function
FZZ(z) proposed by Murakami in order to allow slope discontinuities at
layers’ interfaces [49]. In this case, the Zig-Zag function replaces the
highest expansion order and the following functions are used:

F F F z F z r N= 1, = ( ), = ( = 2, … − 1)b t ZZ r
r (5)

where Murakami's ZigZag Function (MZZF) is defined as

⎛
⎝⎜

⎞
⎠⎟F z ζ z ζ z

z z
z

z z
( ) = (−1) ( ) with ( ) = 2

−
−

+
2ZZ

k
k k

t
k

b
k

t
k

b
k

( ) ( )

( ) ( )

(6)

Note that FZZ(z) is expressed in terms of the non-dimensional layer-
specific coordinate ζ−1 ≤ ≤ +1k and it provides a linear piecewise
function of bi-unit amplitude across the thickness of each layer k. More
details about the use of MZZF in variable kinematics PVD-based
models can be found in the paper by Demasi [50].

The assumptions for a LW description are formulated in each layer
k as in Eq. (3), where the thickness functions are defined by linear
combinations of Legendre polynomials P ζ( )r k as follows:

F ζ P ζ P ζ F ζ P ζ P ζ( ) = ( ) + ( )
2

; ( ) = ( ) − ( )
2

;t k
k k

b k
k k0 1 0 1

(7)

F ζ P ζ P ζ r N( ) = ( ) − ( ) ( = 2, … )r k r k r k−2

where ζk is the non-dimensional coordinate introduced in Eq. (6). The
Legendre polynomials of degree 0 and 1 are P ζ( ) = 1k0 and P ζ ζ( ) =k k1 ,
respectively; higher-order polynomials are defined according to the
following recursive formula:

P ζ n ζ P ζ nP ζ
n

( ) = (2 + 1) ( ) − ( )
+ 1n k

k n k n k
+1

−1
(8)

which leads to the following expressions for the polynomials employed
if N=4:

P ζ
ζ

P ζ
ζ ζ

P ζ
ζ ζ

( ) =
3 − 1

2
; ( ) =

5 − 3
2

; ( ) =
35

8
−

15
4

+ 3
8k

k
k

k k
k

k k
2

2

3

3

4

4 2

(9)

It is finally emphasized that the chosen thickness functions for a LW
model satisfy the following properties

ζ F F F= 1: = 1, = 0, = 0k t b r (10a)

ζ F F F= −1: = 0, = 1, = 0k t b r (10b)

Therefore, ui
k( )

t and ui
k( )

b are the physical displacement components at
the top and bottom of the k th layer, respectively, and F ζ( )t k and F ζ( )b k

are the corresponding linear Lagrange interpolation functions.

2.3. The stress and strain fields

The contributions to the strain and stress fields in each layer k are
identified with respect to the bending (b), transverse normal (n) and
transverse shear (s) deformation of the plate:

ϵ ϵ ϵ
σ σ σσ σ σ σ σ σ

= [ϵ ϵ ϵ ]; = ϵ ; = [ϵ ϵ ]
= [ ]; = ; = [ ]

b
k k k k

n
k k

s
k k k

b
k k k k

n
k k

s
k k k

( )
1
( )

2
( )

6
( ) ( )

3
( ) ( )

5
( )

4
( )

( )
1
( )

2
( )

6
( ) ( )

3
( ) ( )

5
( )

4
( )

(11)

where Voigt's contracted notation for the symmetric strain and stress
tensors has been invoked. The generic layer k is assumed to have a
monoclinic material symmetry in the plate's reference frame x z( , )α ;
thus the linear elastic constitutive law reads in matrix form as follows

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

σ
σ
σ

C C 0

C C 0

0 0 C

ϵ
ϵ
ϵ

=

∼ ∼

∼ ∼

∼

b
k

n
k

s
k

bb
k

bn
k

bn
k

nn
k

ss
k

b
k

n
k

s
k

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

T

(12)



u i
u u i j i j

ϵ = for = 1, 2, 3;
ϵ = + for , = 1, 2, 3 and ≠

i i

i j i j

,

(9− − ) , ,

i

j i (13)

Recalling the separation of the in-plane variables from the thick-
ness direction, employed for expressing the assumed displacement field
as in Eq. (3), the bending, transverse normal and transverse shear
components of the strains defined by Eq. (13) are recast in the
following matrix notation

ϵ Fb Vx z z x( , ) = ( ) ( );b α k τ k τ
k

α
( ) (14a)

ϵ Fn Vx z z x( , ) = ( ) ( );n α k τ k τ
k

α
( ) (14b)

ϵ Fs Vx z z x( , ) = ( ) ( )s α k τ k τ
k

α
( ) (14c)

where V x( )τ
k

α
( ) is the generalized strain vector of each layer defined as

V x u u u u u u u u u( ) = [ ⋮ ⋮ ]τ
k

α
k k k k k k k k k T( )

1
( )

1 ,
( )

1 ,
( )

2
( )

2 ,
( )

2 ,
( )

3
( )

3 ,
( )

3 ,
( )

τ τ τ τ τ τ τ τ τ1 2 1 2 1 2 (15)

The explicit expressions for the matrices Fb Fn,τ τ and Fsτ can be found
in Eq. (A-1).

In order to introduce the transverse shear locking correction
proposed in the next section, the transverse shear strain field given
in Eq. (14c) is split into the classical z − constant contribution γ0 of
standard FSDT, and a contribution γh that depends on the thickness
coordinate z and is related to high-order terms:

ϵ γ γ Fs V Fs Vx z x x z x z x( , ) = ( ) + ( , ) = ( ) + ( ) ( )h
s α k α

h
α k τ τ

k
α τ k τ

k
α

0 0 ( ) ( ) (16)

Note that Fsτ
0 is a matrix containing only constant values for all z −

dependency is contained in the matrix Fs Fs Fsz z( ) = ( ) −h
τ k τ k τ

0. The
matrices Fsτ

0 for ESL and LW models of order N are reported explicitly
in Eq. (A-2) and Eq. (A-3), respectively.

2.4. The two-dimensional weak form of the boundary value problem

The displacement field defined in Eq. (2) is inserted into the PVD
Eq. (1) yielding the following expression

∫ ∫F δu σ F u x F δu t x− ϵ ( ) ( ) d + ( ) d = 0
V

ij τ l ij s m i
Γ

τ i i ατ s
σ

τ (17)

where the summation indexes τ and s are used for the expansions of the
virtual and the actual displacements, respectively, and F F z= ( )τ τ are
the thickness functions evaluated at the z − coordinate at which the
external tractions t are applied. Taking into account the separation of
the thickness direction from the in-plane variables, recalling the strain
definitions in Eqs. (14) and expressing the layer-specific stresses
through the constitutive law Eq. (12), the virtual internal work can
be expressed in the following matrix form

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎫

⎬
⎪⎪

⎭
⎪⎪

∑

∫

∫ ∫V
Fb
Fn
Fs

C C 0

C C 0

0 0 C

Fb
Fn
Fs

V

F δu σ F u x

z x

ϵ ( ) ( ) d =

d d

∼ ∼

∼ ∼

∼

V ij τ l ij s m i

Ω
k

N

τ
k

e

τ

τ

τ

T bb
k

bn
k

bn
k

nn
k

ss
k

s

s

s

k s
k

α
=1

( )

( ) ( )

( ) ( )

( )

( )

τ s

L T
k

T
( )

(18)

The layer integrals along the thickness zk are explicitly carried out
according to the following notation

∫

Z Z Z Z Z

Fb C Fb Fb C Fn Fn C Fb

Fn C Fn Fs C Fs z

{ , , , , }

= { , , ,

, } d

∼ ∼ ∼ ∼ ∼

∼ ∼ ∼

∼ ∼

bb
k

nb
k

bn
k

nn
k

ss
k

e τ
T

bb
k

s τ
T

bn
k

s τ
T

nb
k

s

τ
T

nn
k

s τ
T

ss
k

s k

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

τs τs τs τs τs

k( )

(19)

Furthermore, the special treatment of the transverse shear strain given
in Eq. (16) is introduced, which yields to the following subdivision

Z Z Z Z Z= + + +∼ ∼ ∼ ∼ ∼
ss

k
ss

k
ss

h k
ss
h k

ss
hh k( ) 00( ) 0 ( ) 0( ) ( )

τs τs τs τs τs (20)

This permits to identify those terms that involve the z − constant
transverse shear strains responsible of the locking phenomenon.

The two-dimensional matrix expression for the virtual internal
work is finally written as

⎪

⎪

⎧
⎨
⎩

∫

∫ ∑ V Z Z Z Z Z Z

Z Z V

F δu σ F u x

x

ϵ ( ) ( ) d

= [ + + + + +

+ + ] } d

∼ ∼ ∼ ∼ ∼ ∼

∼ ∼

V
ij τ l ij s m i

Ω k

N

τ
k

bb
k

bn
k

nb
k

nn
k

ss
hh k

ss
h k

ss
h k

ss
k

s
k

α

=1

( ) ( ) ( ) ( ) ( ) ( ) 0 ( )

0( ) 00( ) ( )

τ s

L
T

τs τs τs τs τs τs

τs τs (21)

The terms in Eq. (17) related to external tractions are developed in a
similar manner; details can be found elsewhere [24,23] and are here
omitted for brevity.

3. Finite element approximations

The solution of the two-dimensional boundary value problem
expressed in the previous section is sought in weak form according to
the finite element (FE) method. This section presents the four-node
quadrilateral FE approximation and details out the new QC4 approx-
imation for avoiding transverse shear locking problems and minimizing
the convergence rate loss for distorted meshes.

3.1. Approximation for the geometry

The physical domain x x( , )1 2 is mapped onto the reference, bi-unit
square element, defined by the natural non-dimensional coordinates
ξ η( , ), through to the bilinear Lagrange interpolation functions N ξ η( , ):

x N ξ η X i= ( , ) ( = 1, …4)α i αi (22)

where Xαi are the x −α coordinates of the four corner nodes, see Fig. 2.

3.2. Isoparametric interpolation

According to the isoparametric approach, the same interpolation
defined by Eq. (22) is employed for approximating the unknown
functions and their in-plane derivatives contained in V x( )τ

k
α

( ) :

V B q i= ( = 1, …4)τ
k

τ i τ i
k( ) ( )

(23)

where q u u u= [ ]τ i
k k k k

i
T( )

1
( )

2
( )

3
( )

τ τ τ is the DOF vector of the node i related to
the layer k and the expansion order index τ. The 9×3 matrix Bτ i

Fig. 2. Four-node quadrangular element in the physical frame x x,1 2 and natural frame

ξ η, .

.

where superscript T is the transposition operator. The constitutive law 
is obviously defined for each layer k for it depends on the layer's 
orthotropic elastic properties CP

k
Q

( )  (P Q, ∈ {1, 6 )} and on the orienta-
tion angle θ(k).

Within the small strain and small displacement approximation, the 
linearized strain components are defined as



∫K B Z Z Z Z Z B x= [ + + + + ] d∼ ∼ ∼ ∼ ∼
ij τs

k

Ω
τ i
T

bb
k

nb
k

bn
k

nn
k

ss
k

s j α
( ) ( ) ( ) ( ) ( ) ( )

τs τs τs τs τs (24)

Explicit expressions of this model-invariant kernel can be found in
several works [24,23]. These references report also the expansion
procedure over the summation indexes τ and s as well as the assembly
of all layers k, which are here omitted for brevity.

For the present four-node element, a 2×2 Gauss quadrature scheme
is employed for an exact numerical evaluation of the domain integral
(the 4 Gauss points are represented by the black triangles in Fig. 2). In
order to contrast the shear locking phenomenon, the transverse shear

stiffness contribution related to Z∼ss
k( )
τs has been reduced-integrated [24]

or treated within a MITC approach [41]. In this work, however, a new
interpolation for the z − constant transverse shear strain is presented,

which affects only the contributions Z Z,∼ ∼
ss ss

h00 0
and Z∼ss

h0
.

3.3. The new QC4 interpolation

The isoparametric interpolation for the transverse shear field leads
to a locking phenomenon because of the incompatibility of the
polynomial spaces defined by the sum of uατ and the in-plane derivative
u3 ,τ α (α = 1, 2 for γ13

0 and γ23
0 , respectively) [16]. The locking pathology is

associated to the z − constant part only, for higher-order contributions
depend on the plate thickness and vanish naturally in the thin plate
limit. Thus a new, field-compatible interpolation for the four-node
element is constructed for the z − constant part γ0: this is an extension
to arbitrary variable kinematics plate models of the approach proposed
in [47] for FSDT plate elements and in [16] to a refined plate element.
The new interpolation is constructed as follows:

• In order to enhance the element's robustness for distorted shapes,
the z − constant part of transverse shear strain components is first
written in the element's natural coordinate system ξ η( , ) as:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ Fs U

γ ξ η

γ ξ η
ξ η

( , )

( , )
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k

τ τ
k

0

0

( )

0 ( )
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where
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3
( )

3 ,
( )

3 ,
( )

τ τ ξ τ η τ τ ξ τ η τ τ ξ τ η

(26)

is the projection onto the reduced natural coordinates ξ η, of the
generalized strain vector Vτ

k( ).

• The field-compatible approximation shall be constructed upon
enhancing the polynomial space of the transverse deflection u k

3
( )
τ so

that its derivative matches the bi-linear space of the in-plane
displacements uξτ and uητ. For this, a quadratic serendipity inter-

polation is assumed for u k
3
( )
τ by introducing four supplementary

DOFs, u( )
A3 ,τ ξ , u( )

B3 ,τ η , u( )
C3 ,τ ξ and u( )

D3 ,τ η , at the mid-side points, see
Fig. 2. The supplementary DOFs are subsequently expressed in
terms of the DOFs at the four corner nodes by imposing the
tangential component of the transverse shear strain to be constant
along the element's edges, viz.

γ ξ η γ ξ η( , = ± 1) = constant; ( = ± 1, ) = constantξ η
0 0

(27)

A new interpolation for the transverse deflection u3τ is thus obtained
through these four equations. The resulting four-node FE shall be
denoted QC4 due to the quadratic and constant approximations
employed for the transverse deflection and the tangential transverse
shear strain, respectively.

• The new field-compatible interpolation for γ γ,ξ η
0 0 is defined by the

polynomial basis obtained from the intersection sets of monomial
terms in ξ and η:

γ u u η

γ u u ξ

( ) = ( ) + ( ) = {1, }

( ) = ( ) + ( ) = {1, }
ξ ξ

η η

0
3 ,

0
3 ,

τ τ ξ

τ τ η (28)

• According to the polynomial basis spanning the transverse shear
strain components, only two points are required for defining the
resulting linear variations along the reduced natural coordinates.
Choosing these points to be the four mid-side points A D− (see
Fig. 2), one has

γ ξ η C ξ η γ ξ η C ξ η γ ξ η

γ ξ η C ξ η γ ξ η C ξ η γ ξ η

( , ) = ( , ) ( , ) + ( , ) ( , )

( , ) = ( , ) ( , ) + ( , ) ( , )
ξ ξ ξ A A ξ ξ C C

η η η D D η η D D

0
1

0
2

0

0
1

0
2

0
(29a)

with the following interpolating functions:

Cξ ξ η η Cξ ξ η η

Cη ξ η ξ Cη ξ η ξ

( , ) = (1 − )
2

; ( , ) = (1 + )
2

( , ) = (1 − )
2

; ( , ) = (1 + )
2

1 2

1 2 (29b)

• The physical transverse shear strains are finally deduced from the
transverse shear strains in the reference domain as

⎡
⎣
⎢⎢
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η

13
0

23
0

−1
0

0
(30)

where the J is the 2×2 Jacobian matrix evaluated at the 4 Gauss
points used for integrating the stiffness matrix.

The expression for the QC4 approximation for the z − constant
transverse shear strain field can be finally written as

γ J Fs B q= τ i τ i
k0 −1 0 ( )

(31)

where Bi is the matrix containing the modified QC4 interpolation
functions and their derivatives with respect to the physical coordinates
xα. The explicit expression of the four Bi matrices is given in Eq. (A-4).

4. Numerical results

Several numerical benchmark problems are considered for display-
ing the accuracy and robustness of the proposed QC4 CUF-based plate
element. The classical CUF acronyms are used for naming the various
plate models: the polynomial order N is appended to a string that
identifies whether the model is ESL (EDN), Zig-Zag (EDZN) or LW
(LDN).

A first set of problems involving a simple homogeneous and
isotropic plate is used for assessing the element's performance, i.e.,
the properties of the stiffness matrix via an eigenvalue analysis, the
convergence rate for thin and thick plates, and the sensitivity with
respect to distorted element shapes; these latter tests are conducted on
a square plate with distorted mesh, a skew plate and a circular plate.
Previous analyses have shown that all CUF-based elements have the
same sensitivity to shear locking irrespective of the order of expansion
N [40]. The case studies considered in this first problem set are hence
computed with the ED2 model only, an ESL model that retains the
three-dimensional constitutive law without Poisson locking.

A final set of problems is subsequently proposed for demonstrating
the accuracy of the predicted displacements and stresses for homo-
geneous and composite, thin and thick plates. In this latter case study,
several CUF-based elements are used for highlighting the variable
kinematics framework.

The influence of the boundary conditions and type of loading are

.

contains the shape functions iN ξ( , η) of Eq. (22) and their derivatives with 
respect to the physical coordinates xα. Introducing the FE 
approximation Eq. (23) into Eq. (21) yields the definition of the 3×3 
fundamental nucleus of the classical CUF-based plate elements



also addressed; Table 1 lists the acronyms used for denoting the
various configurations. For all tests except the skew plate, symmetry is
exploited to reduce the model to only a quarter plate.

Present QC4 results are compared against solutions obtained with
the following isoparametric approaches:

ISO full-integrated isoparametric element(2×2 Gauss points for
the whole stiffness matrix)

ISO-SI isoparametric element with selective integration(1 Gauss p-
oint for transverse shear stiffness contributions)

All elements are implemented as user subroutines into the com-
mercial ABAQUS software. A dedicated pre-processing tool allows to
prepare the FE model within the ABAQUS/CAE graphical interface.

4.1. The properties of the stiffness matrix

The eigenvalues of the stiffness matrix of a square element are
analyzed for a thin and a thick plate, according to the following
configuration

geometry square element a a× (a=1), thickness e = 10 n− (n = 1, 3)
boundary conditions (SA)
material properties isotropic with E=10.92 and ν = 0.3

The results of the eigenvalue analysis are reported for thick and thin
plates in Figs. 3 and 4, respectively. The proposed graphics allow to
recognize at a glance the eigenvalues associated to rigid-body modes as
well as the gap between them and those associated to deformation
modes. It is apparent that the proposed QC4 element and the full-
integrated isoparametric element have the correct number of rigid-
body modes, i.e., 6, regardless of the element's slenderness S=a/e. On
the contrary, the selective reduced integration scheme entails 3
spurious zero-energy modes, which indicates the possibility of an
unstable behavior of both, thick and thin elements.

4.2. The transverse shear locking

A numerical test is carried out to assess the sensitivity of the
proposed QC4 element to the transverse shear locking. The test is
described as follows:

geometry square plate a a× (a=1), thickness e = 10 n− with n ∈ {0, 4}
boundary conditions (SA) or (CL) on all sides
loading (P) or (C)
material properties isotropic with E=10.92 and ν = 0.3
mesh regular with N = 2, 4, 8, 16, 32 (see Fig. 5)
results transverse displacement U3 at the center of the plate

reference values Kirchhoff-Love theory
⎛
⎝⎜

⎞
⎠⎟D = E

ν12(1 − )2 [51]:(SA-P)

U a a q a
e D

( /2, /2, 0) = 0.00406a
3 0

4

3 (CL-P)

U a a q a
e D

( /2, /2, 0) = 0.00126a
3 0

4

3 (SA-C)

U a a P a
e D

( /2, /2, 0) = 0.0116a
3

2

3 (CL-C)

U a a P a
e D

( /2, /2, 0) = 0.0056a
3

2

3

Four configurations are considered, defined by the combination of
boundary conditions and loading. The concentrated force is applied only
to thin plates with S ≥ 102 in order to avoid the singularity at the loaded
node; thick plates (S=10) are considered only for a uniform pressure
loading. In view of an assessment of the sensitivity to the transverse
shear locking, the results are summarized in two different ways:

• Constant mesh, varying slenderness ratio
Three regular meshes with N = 4, 8, 16 have been considered for

the quarter plate (see Fig. 5) and, for each mesh, the results are given
for varying length-to-thickness ratios S=a/e: Figs. 6 and 7 report the
results for plates subjected to a uniform pressure load and a
concentrated force, respectively. For both loading types, the full-
integrated isoparametric element is shown to suffer a very strong
locking as the plate becomes thin (S ≥ 102). On the contrary, both the
QC4 and the ISO-SI elements are free from transverse shear locking
and provide the reference Kirchhoff-Love values with good accuracy: a
N=8 mesh is sufficient to obtain accurate results for all configurations.

• Convergence analysis for a thin or thick plate
The convergence curves of the transverse displacement at the

plate's center with respect to the mesh density are shown in log-log
scale in Fig. 8 and 9 for various length-to-thickness ratios
(S = 10, 10 , 102 4). The previous comments are confirmed: the con-
vergence rate of the full-integrated ISO element is shown to strongly
degrade as the length-to-thickness ratio S increases, a behavior that
clearly indicates the presence of the transverse shear locking
pathology; on the contrary, the convergence rate of the QC4 and
ISO-SI elements remains sensibly the same irrespective of the
length-to-thickness ratio. The monotone convergence of the QC4
element can be appreciated. As expected, the accuracy of the results
depends on the test case for a given mesh.

Table 1
Acronyms for boundary conditions and type of loading.

Boundary conditions Loading

(SA) Simply supported (P) Uniform load q0 at top surface
(CL) Clamped (C) Concentrated force P at plate center
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Fig. 3. Eigenvalues of the stiffness matrix for an ED2 model and thick plate (a e/ = 10).



4.3. The distortion tests

In this section, the sensitivity of the present FE to the mesh
distortion is illustrated on three test cases widely used in open
literature, namely the square, skew and circular plate.

4.3.1. The square plate test
This standard test is classically used in order to investigate the

mesh sensitivity in plate bending problems. The data are given as
follows:

geometry square plate a a× with a = 100 and thickness e = 0.1
boundary conditions (SA) or (CL) on all sides
loading (P) or (C)

material properties isotropic with E = 10.92 and ν = 0.3
mesh N = 2 for the quarter plate, with the distortion parameter

s ∈ {−12, −8, −4, 0, 4, 8, 12} (see Fig. 10)
results transverse displacement U u a a= ( /2, /2, 0)3 3 at plate's center
reference value transverse displacement U3

(0) for the regular mesh
(s=0)

In this test, the distorted meshes are characterized by the parameter
s defining the coordinates of the mid-node of the quarter plate, which is
located in the undistorted mesh (s=0) at X X a= = /41 2 . The parameter s
may be positive or negative, as illustrated in Fig. 10, and defines the
coordinates of the mid-node as a s a s( /4 + , /4 + ): for the most distorted
meshes (s = ± 12) the mid-node is hence located at ( ± 37, ± 37). Note
that it is not usual in open literature to consider positive and negative
values for the parameter s.

The transverse displacement U3 at the center node is normalized
with respect to the value U3

0 obtained with the regular, undistorted
mesh (s=0). Fig. 11 shows the results obtained by the QC4, ISO and
ISO-SI elements with ED2 kinematics for the four configurations
defined by combining the two boundary and loading conditions. As
expected, the largest errors occur for the most distorted meshes. The
maximum absolute errors occurring for the four configurations are
summarized in Table 2. The results indicate that QC4 is the most
robust element with respect to mesh distortion for all boundary

QC4 ISO-SI ISOS=103
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Fig. 4. Eigenvalues of the stiffness matrix for an ED2 model and thin plate (a e/ = 103).

Fig. 5. Regular meshes for a quarter of the plate.

Fig. 6. Transverse displacement with respect to slenderness ratio for thick (S=10) to
very thin plates (S = 105) under a pressure load.

Fig. 7. Transverse displacement with respect to slenderness ratio for thin plates
(S ≥ 102) under a concentrated load.



conditions, with a maximum error that does not exceed 20%. The
highest distortion sensitivity is displayed by the full-integrated ISO
element.

4.3.2. Razzaque's skew plate test
This benchmark originally proposed by Razzaque [52] is illustrated

in Fig. 12 and defined by the following data:

geometry skewed square plate a a× with a = 100 and thickness
e = 0.1, skew angle ψ = 60°

boundary conditions (SA) on straight edges, oblique edges are free
loading (P)
material properties isotropic with E = 103 and ν = 0.31
mesh N = 2, 4, 8, 16, 32, 64 skew elements for whole plate
results non-dimensional transverse deflection at plate's center:

U u D
q a

= (0, 0, 0) 10
3 3

2

0
4 with D = E

ν12(1 − )2

reference value U = 0.79453 (from [52])

Table 3 reports the non-dimensional transverse displacement at the
center of the skew plate, obtained by the QC4, ISO-SI and ISO elements
with ED2 kinematics for different mesh densities N. The table also
reports the percentage errors with respect to Razzaque's reference
solution, which allows to identify the convergence rate of the three
elements: the ISO-SI and QC4 elements show the same convergence
rate and recover the reference solution with approximately 1% error
with a N=16 mesh. The ISO element yields very poor results as a
consequence of two causes, namely the severe transverse shear locking
affecting the response of the thin plate (S a e= / = 103) and the high
sensitivity to non-rectangular element shapes. This test thus confirms
the robustness of the present QC4 element.

4.3.3. The circular plate test
A last mesh distortion sensitivity test is considered, which concerns

the bending of a clamped circular isotropic plate subjected to a uniform
pressure load according to the following data:

geometry circular plate of radius R = 5 and thickness e = 0.1
boundary conditions (CL) on the external perimeter
loading (P)
material properties isotropic with E = 1.7472 107 and ν = 0.3
mesh N = 3, 12, 28, 60 elements for a quarter plate (see Fig. 13)
results deflection U u= (0, 0, 0)3 3 at the center of the plate
reference value Kirchhoff-Love theory U = 0.61147 103

ref −6 [53]

The evolution of the ratio between the central deflection and the
Kirchhoff-Love solution with respect to the mesh density is reported in
Fig. 14. The convergence is compared for the QC4, ISO and ISO-SI
elements with ED2 kinematics. As previously discussed, the ISO
element suffers the distorted shapes and for the present case it shows
errors exceeding 90% even with the more refined mesh. It can be
noticed that the QC4 element has a good convergence rate and its
accuracy is very satisfactory. In particular, the error becomes less than
3% for N ≥ 30, whereas the converged result of the ISO-SI FE is still
affected with an error of about 10%.

4.4. Mechanical analysis of isotropic plates

The focus is here set on the convergence of displacement and
stresses predicted by the proposed QC4 element for a plate bending
problem. The benchmark problem is defined as follows:

geometry square plate a a× and length-to-thickness ratio

Fig. 8. Convergence of the transverse displacement for thick (S=10) and thin
(S = 10 , 102 4) plates under a pressure load.

Fig. 9. Convergence of the transverse displacement for thin plates (S = 10 , 102 4) under a

concentrated load.

Fig. 10. Meshes for the quarter plate with distortion defined by the parameter s.



S a
e

= = 2, 5, 10, 100

boundary conditions (SA)
loading bi-sinusoidal pressure on the top surface:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q x x z e q πx

a
πx
a

( , ,, = /2) = sin sin3 1 2 0
2

material properties isotropic with E=73 GPa and ν = 0.34
results non-dimensional response defined as

U u a e E
q eS

U u a a E
q eS

σ σ a a e
q S

σ σ a
q S

= (0, /2, − /2)

= ( /2, /2, 0) 100

= ( /2, /2, /2) 1

= (0, /2, 0) 1

1 1
0

3

3 3
0

4

11 11
0

2

13 13
0

reference value closed-form Navier-type solution (ED2 model)

The convergence behavior for displacements and stresses of the QC4
element is reported in Fig. 15, where both very thick (S=5) and thin
(S=100) plates are considered. The present results are obtained with an
ED2 kinematics and the FE error is defined with respect to the closed-form

Fig. 11. Variation of the normalized central deflection with respect to the parameter s for square plates with various loading and boundary conditions (ED2 model).

Table 2
Maximum absolute error of the central deflection and corresponding s − value for
various boundary and loading conditions.

Config. QC4 ISO-SI ISO

error [%] s error [%] s error [%] s

SA-P 8.6 −12 14.2 −12 27.0 −12
SA-C 8.9 +12 16.5 −12 17.9 −12
CL-P 11.2 −12 19.7 −12 32.8 −12
CL-C 18.9 +12 18.9 +12 30.8 +12

Fig. 12. Razzaque's skew plate test (mesh N=4).

Table 3
Non-dimensional deflection at the center point of Razzaque's skew plate (values in
parentheses are the percentage errors with respect to the reference solution).

S N=2 N=4 N=8 N=16 N=32 N=64

ISO 0.0000 0.0000 0.0002 0.0007 0.0029 0.0114
(−100.0%) (−100.0%) (−100.0%) (−99.9%) (−99.6%) (−98.6%)

ISO−SI 0.3269 0.6616 0.7547 0.7843 0.7908 0.7927
(−58.9%) (−16.7%) (−5.0%) (−1.3%) (−0.5%) (−0.2%)

QC4 0.3727 0.6609 0.7533 0.7838 0.7908 0.7927
(−53.1%) (−16.8%) (−5.2%) (−1.3%) (−0.5%) (−0.2%)



Navier-type solutions obtained with the same ED2 model. The convergence
rate is shown to be independent of the length-to-thickness ratio and is very
good for both, displacements and stresses: note that all discretization errors
are less than 1% if a mesh with N ≥ 8 elements is used.

Fig. 16 displays the distributions along the z − axis of the
normalized transverse stresses σ z σ a z q S( ) = (0, /2, )/( )13 13 0 and
σ z σ a a z q( ) = ( /2, /2, )/33 33 0, computed directly from the constitutive
equations, when the plate thickness is subdivided into N = 1, 3, 5L

numerical layers with an LD4 kinematics. A FE mesh with N=8 has
been used for the results in Fig. 16. It is shown that, for the present
case of isotropic plate, the refinement of the response across the
thickness by means of numerical layers has no effect and the converged
solution is reached with NL=1. For a thick plate (S=5), the LD4 model
is capable to accurately recover the natural boundary conditions at the
outer surfaces of the plate, see Fig. 16 (left). In case of a thin plate
(S=100), however, the transverse normal stress distribution is highly
inaccurate, see Fig. 16 (right). Fig. 17 shows that, for a thin plate, it is
necessary to refine the in-plane FE mesh in order to enhance the
accuracy of the σ33 distribution across the thickness, up to the
fulfillment of the natural boundary conditions at the outer surfaces of
the plate, see also [16].

4.5. Mechanical analysis of laminated composite plates

This final case study involves simply-supported cross-ply laminates
subjected to a bi-sinusoidal pressure load, for which Pagano provided
exact elasticity results [54]. The following configuration is considered:

geometry square plate a a× and length-to-thickness ratio
S a

e
= = 4, 10, 100

boundary conditions (SA)
loading bi-sinusoidal pressure on the top surface:-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q x x z e q πx

a
πx
a

( , , = /2) = sin sin3 1 2 0
2

material properties three-layered cross-ply plate (0°/90°/0°); each la-
yer has thickness e e= /3k( ) and orthotropic properties:
E E G E G E ν ν/ = 25; / = 0.5; / = 0.2; = = 0.25L T LT T TT T LT TT (L T,
indicate longitudinal and transverse directions, respectively)

mesh N=8 for the quarter plate
results displacements and stresses are made non-dimensional ac-

cording to
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reference value 3D exact elasticity results given by Pagano [54]

Three ESL models (ED2, ED4 and EDZ4) and two LW models (LD2
and LD4) are considered in order to assess different plate theories.
Present QC4 results, identified by the suffix -FEM, are compared

Fig. 13. FE meshes with N = 3, 12, 28 elements of a quarter of the circular plate.

Fig. 14. Convergence study of the central deflection for the circular plate.

Fig. 15. Simply-supported square isotropic plate under bi-sinusoidal pressure load: convergence of displacements and stresses with respect to corresponding closed-form solutions
(ED2 model) for length-to-thickness ratios S=5 (left) and S=100 (right).



against the exact solution proposed by Pagano [54] and the Navier
closed-form solutions obtained with the corresponding plate model.
These latter results are identified by the suffix -anlt.

Tables 4 and 5 list the non-dimensional displacement and stress

values, respectively, for all considered models, along with the percen-
tage error with respect to the reference solution. Three different length-
to-thickness ratios have been considered (S = 4, 10, 100). While simple
ESL models are sufficiently accurate for the global response of thin
plates, high-order LW models are necessary for thick plates and for an
accurate prediction of the local transverse stresses. The results show
that the N=8 mesh provides converged FEM results with respect to the
corresponding closed-form Navier solution, thus confirming the per-
formances for the isotropic plate. Moreover, the same behavior is found
for all considered plate models, which means that the QC4 approxima-
tion could be successfully extended to arbitrary kinematics including
Zig-Zag and LW models.

It is also interesting to illustrate the through-thickness distribution
of the response. Figs. 18, 19 and 20 display the distributions of non-
dimensional displacements, in-plane stresses and transverse stresses,
respectively, obtained for the moderately thick plate S( = 10) and with
the high-order ED4 kinematics. All stresses are directly evaluated from
the compatible strains by means of the constitutive relation. The
distributions of the displacements (Fig. 18) and the in-plane stresses
(Fig. 19) agree well with the reference elasticity solution. However,
note that the Zig-Zag shape of the u1 displacement is not captured by
the considered ED4 model. Larger discrepancies are obviously ob-
tained in Fig. 20 for the distributions of the transverse shear stresses
because of their interlaminar discontinuity, which is typical of any
PVD-based formulation. Thanks to the variable kinematics approach,
the proposed FE is nonetheless particularly efficient and accurate in the
computation of displacements and stresses for multilayered plates.

5. Conclusion

This paper has introduced a new locking-free four-node quadrilat-
eral finite element (FE) for displacement-based variable kinematics
plate models expressed through Carrera's Unified Formulation (CUF).
The remedy to the shear locking pathology pertains to the B-bar
method and consists in a new QC4 approximation that is constructed
for the z − constant term of the transverse shear strain only. The
robustness and accuracy of the proposed element has been thoroughly
assessed by referring to a number of tests that are recommended
whenever new FE applications are proposed: classical eigenvalue
counts, convergence behavior for thin and thick plates under various
boundary and loading conditions, as well as three case studies
involving distorted meshes. The numerical results confirmed the
superiority of the proposed FE in comparison to classical isoparametric
approaches with full or reduced integrations, i.e., it has a correct rank,
is free of transverse shear locking and is less sensitive to distorted
element shapes, showing a high convergence rate for both displace-
ments and stresses. The proposed variable kinematics FE, implemen-
ted as a user subroutine into Abaqus, provides a robust tool for the
analysis of composite laminates, for which different models may be
used for adapting the computational cost in case of thin or thick plates
or whether a global or local response is required.

Further studies shall concern the optimization of the computational
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Fig. 16. Influence of the number of numerical layers NL on the through-thickness distribution of σ13 and σ33 for a thick (S=5, left) and a thin (S=100, right) plate (isotropic plate loaded

at top surface, LD4, N=8).
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Fig. 17. Influence of the FE mesh on the through-thickness distribution of the σ33
(isotropic plate loaded at top surface, LD4, NL=1).

Table 4
Simply-supported (0°/90°/0°) square plate under bi-sinusoidal pressure load: Non-
dimensional displacements for length-to-thickness ratios S = 4, 10, 100.

S Model ⎛
⎝⎜

⎞
⎠⎟u − e

1 2

⎛
⎝⎜

⎞
⎠⎟u − e

2 2

u (0)3

4 Ref. [54] 0.0094 0.0228 2.0059
ED2-anlt 0.0052 (44.43%) 0.0164 (28.00%) 1.5440 (23.03%)
ED2-FEM 0.0052 (44.48%) 0.0165 (27.83%) 1.5457 (22.94%)
ED4-anlt 0.0092 (1.93%) 0.0216 (5.03%) 1.8926 (5.65%)
ED4-FEM 0.0092 (2.09%) 0.0217 (4.93%) 1.8920 (5.68%)
EDZ4-anlt 0.0093 (0.85%) 0.0226 (0.83%) 1.9942 (0.58%)
EDZ4-FEM 0.0092 (1.22%) 0.0226 (1.00%) 1.9960 (0.49%)
LD2-anlt 0.0092 (1.88%) 0.0225 (1.32%) 1.9864 (0.97%)
LD2-FEM 0.0092 (1.75%) 0.0226 (1.07%) 1.9881 (0.89%)
LD4-anlt 0.0094 (0.00%) 0.0228 (0.00%) 2.0059 (0.00%)
LD4-FEM 0.0094 (0.14%) 0.0229 (0.26%) 2.0078 (0.09%)

10 Ref. [54] 0.0074 0.0111 0.7530
ED2-anlt 0.0065 (12.42%) 0.0092 (17.14%) 0.6294 (16.42%)
ED2-FEM 0.0065 (12.43%) 0.0092 (17.00%) 0.6287 (16.52%)
ED4-anlt 0.0073 (1.17%) 0.0105 (4.87%) 0.7151 (5.04%)
ED4-FEM 0.0073 (1.21%) 0.0105 (4.77%) 0.7138 (5.21%)
EDZ4-anlt 0.0074 (0.04%) 0.0111 (0.06%) 0.7527 (0.04%)
EDZ4-FEM 0.0074 (0.04%) 0.0111 (0.03%) 0.7515 (0.21%)
LD2-anlt 0.0074 (0.15%) 0.0111 (0.14%) 0.7521 (0.12%)
LD2-FEM 0.0074 (0.08%) 0.0111 (0.10%) 0.7517 (0.17%)
LD4-anlt 0.0074 (0.00%) 0.0111 (0.00%) 0.7530 (0.00%)
LD4-FEM 0.0074 (0.07%) 0.0111 (0.23%) 0.7526 (0.05%)

100 Ref. [54] 0.0068 0.0068 0.4347
ED2-anlt 0.0068 (0.15%) 0.0068 (0.34%) 0.4333 (0.33%)
ED2-FEM 0.0068 (0.13%) 0.0068 (0.32%) 0.4320 (0.63%)
ED4-anlt 0.0068 (0.00%) 0.0068 (0.10%) 0.4343 (0.11%)
ED4-FEM 0.0068 (0.00%) 0.0068 (0.09%) 0.4329 (0.41%)
EDZ4-anlt 0.0068 (0.00%) 0.0068 (0.00%) 0.4347 (0.00%)
EDZ4-FEM 0.0068 (0.01%) 0.0068 (0.02%) 0.4334 (0.31%)
LD2-anlt 0.0068 (0.00%) 0.0068 (0.00%) 0.4347 (0.00%)
LD2-FEM 0.0068 (0.01%) 0.0068 (0.02%) 0.4334 (0.30%)
LD4-anlt 0.0068 (0.00%) 0.0068 (0.00%) 0.4347 (0.00%)
LD4-FEM 0.0068 (0.01%) 0.0068 (0.02%) 0.4334 (0.30%)



Table 5
Simply-supported (0°/90°/0°) square plate under bi-sinusoidal pressure load: Non-dimensional stresses for length-to-thickness ratios S = 4, 10, 100.

S Model ⎛
⎝⎜

⎞
⎠⎟σ e

11 2

⎛
⎝⎜

⎞
⎠⎟σ− − e

22 6

⎛
⎝⎜

⎞
⎠⎟σ − e

12 2

σ (0)13 σ (0)23

4 Ref. [54] 0.8008 0.5563 0.0505 0.2559 0.2172
ED2-anlt 0.4677 (41.59%) 0.4473 (19.60%) 0.0339 (32.78%) 0.1209 (52.76%) 0.1248 (42.54%)
ED2-FEM 0.4648 (41.96%) 0.4454 (19.93%) 0.0338 (33.11%) 0.1204 (52.95%) 0.1246 (42.63%)
ED4-anlt 0.7864 (1.80%) 0.5070 (8.86%) 0.0484 (4.13%) 0.2050 (19.88%) 0.1830 (15.75%)
ED4-FEM 0.7807 (2.52%) 0.5042 (9.36%) 0.0481 (4.73%) 0.2035 (20.48%) 0.1824 (16.04%)
EDZ4-anlt 0.7942 (0.82%) 0.5504 (1.06%) 0.0501 (0.84%) 0.2567 (0.31%) 0.1843(15.15%)
EDZ4-FEM 0.7904 (1.31%) 0.5448 (2.07%) 0.0496 (1.70%) 0.2552 (0.29%) 0.1832(15.63%)
LD2-anlt 0.7873 (1.70%) 0.5448 (2.07%) 0.0498 (1.48%) 0.2518 (1.60%) 0.1752 (19.32%)
LD2-FEM 0.7837 (2.14%) 0.5422 (2.53%) 0.0495 (1.90%) 0.2505 (2.10%) 0.1750 (19.44%)
LD4-anlt 0.8009 (0.00%) 0.5563 (0.01%) 0.0505 (0.00%) 0.2559 (0.01%) 0.2180 (0.35%)
LD4-FEM 0.7974 (0.44%) 0.5538 (0.45%) 0.0503 (0.42%) 0.2546 (0.50%) 0.2176 (0.15%)

10 Ref. [54] 0.5906 0.2882 0.0290 0.3573 0.1228
ED2-anlt 0.5168 (12.49%) 0.2438 (15.39%) 0.0246 (15.25%) 0.1375 (61.52%) 0.0751 (38.81%)
ED2-FEM 0.5135 (13.06%) 0.2427 (15.80%) 0.0244 (15.72%) 0.1370 (61.65%) 0.0749 (38.96%)
ED4-anlt 0.5835 (1.20%) 0.2726 (5.41%) 0.0280 (3.39%) 0.2617 (26.75%) 0.1030 (16.10%)
ED4-FEM 0.5795 (1.87%) 0.2711 (5.93%) 0.0278 (3.97%) 0.2597(27.33%) 0.1026(16.41%)
EDZ4-anlt 0.5903 (0.06%) 0.2881 (0.05%) 0.0290 (0.05%) 0.3617 (1.24%) 0.1031 (16.05%)
EDZ4-FEM 0.5870 (0.61%) 0.2861 (0.71%) 0.0288 (0.66%) 0.3598 (0.69%) 0.1025 (16.52%)
LD2-anlt 0.5899 (0.12%) 0.2877 (0.16%) 0.0289 (0.14%) 0.3557 (0.46%) 0.0980 (20.20%)
LD2-FEM 0.5865 (0.69%) 0.2865 (0.59%) 0.0288 (0.62%) 0.3543 (0.83%) 0.0978 (20.32%)
LD4-anlt 0.5906 (0.00%) 0.2882 (0.00%) 0.0290 (0.00%) 0.3573 (0.00%) 0.1228 (0.06%)
LD4-FEM 0.5872 (0.57%) 0.2870 (0.43%) 0.0288 (0.48%) 0.3560 (0.38%) 0.1226 (0.15%)

100 Ref. [54] 0.5393 0.1808 0.0214 0.3947 0.0828
ED2-anlt 0.5384 (0.15%) 0.1803 (0.29%) 0.0213 (0.24%) 0.1424 (63.93%) 0.0597 (27.95%)
ED2-FEM 0.5350 (0.78%) 0.1791 (0.92%) 0.0212 (0.87%) 0.1419 (64.05%) 0.0594 (28.22%)
ED4-anlt 0.5392 (0.02%) 0.1806 (0.09%) 0.0214 (0.06%) 0.2806 (28.90%) 0.0734 (11.33%)
ED4-FEM 0.5358 (0.65%) 0.1795 (0.72%) 0.0212 (0.69%) 0.2784 (29.46%) 0.0731 (11.74%)
EDZ4-anlt 0.5393 (0.00%) 0.1808 (0.02%) 0.0214 (0.00%) 0.3998 (1.29%) 0.0702 (15.25%)
EDZ4-FEM 0.5358 (0.63%) 0.1797 (0.61%) 0.0212 (0.63%) 0.3978 (0.78%) 0.0698 (15.78%)
LD2-anlt 0.5393 (0.00%) 0.1808 (0.02%) 0.0214 (0.00%) 0.3934 (0.34%) 0.0666 (19.58%)
LD2-FEM 0.5358 (0.63%) 0.1797 (0.61%) 0.0212 (0.63%) 0.3921 (0.65%) 0.0664 (19.87%)
LD4-anlt 0.5393 (0.00%) 0.1808 (0.02%) 0.0214 (0.00%) 0.3947 (0.00%) 0.0828 (0.00%)
LD4-FEM 0.5359 (0.63%) 0.1797 (0.63%) 0.0212 (0.62%) 0.3934 (0.32%) 0.0825 (0.35%)
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Fig. 18. Through-thickness distribution of u1 (left), u2 (middle) and u3 (right) for the (0°/90°/0°) square plate (S=10).
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cost for FE models of composite structures: on the one hand, the FE
implementation of a more general variable kinematics modeling
approach will be considered [55]; the variable kinematics models shall,

on the other hand, be effectively employed within a global-local
approach that limits the use of expensive, highly accurate and quasi-
3D models to small model portions.

Appendix A. Appendix

A.1. Matrices with thickness functions

The arrays defining the through-thickness behavior of the strain field in Eqs. (14) are

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥Fb

F
F

F F
=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

τ

τ

τ

τ τ (A-1a)

Fn F= [0 0 0 0 0 0 0 0]τ τ z, (A-1b)

⎡
⎣⎢

⎤
⎦⎥Fs

F F
F F

=
0 0 0 0 0 0 0

0 0 0 0 0 0 0τ
τ z τ

τ z τ

,

, (A-1c)

The thickness functions describing the z − constant transverse shear strain γ0 in Eq. (16) have the following expressions depending on the
model:

• ESL model: the following matrices are used for all expansion orders N ≥ 1:

⎡
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0

(A-2)

• LW model: with reference to the notation in Eq. (3), the approximation is defined as Fs Fs Fs Fs= + +τ t b r
0 0 0 0 (with r = 2, 3, 4), as follows:
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Fig. 20. Through-thickness distribution of σ13 (left), σ23 (middle) and σ33 (right) for the (0°/90°/0°) square plate (S=10).



A.2. QC4 interpolation

The non-zero terms of the 9×3 matrices B i( = 1 − 4)i that define the QC4 interpolation for γ0 as in Eq. (31) are

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

η J η J η
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where Jαβ
i( ) is the Jacobian at node i.
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