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On the application of the Ritz method to free vibration and buckling analysis
of highly anisotropic plates

R. Vescovini, L. Dozio, M. D’Ottavio, O. Polit

1. Introduction

Since its original formulation in 1909 [1], the Ritz method has been
largely employed to obtain approximate yet reliable solutions of various
structural problems, including plates of different shapes, material
properties and boundary conditions.

The ease of formulation, which is especially true for structures
characterized by relatively simple domains, in conjunction with the
favorable balance of accuracy and number of degrees of freedom, make
the method of Ritz an interesting strategy even for this day and age, in
particular when extensive parametric and optimization studies are
performed during the preliminary stages of the design process. One of
the most important steps in the development of Ritz-based models
consists of choosing a the set of admissible functions when approx-
imating the problem’s unknowns. In the past, several different strate-
gies have been proposed in this regard. Following the seminal work of
Ritz [1], who presented the free vibration solution of a completely free
rectangular plate using a series of multiplications of free-free beam
vibration mode shapes, beam eigenfunctions have been used in many
cases to obtain frequency parameters and buckling loads of rectangular
plates involving various combinations of boundary constraints [2–4].
However, this procedure may be inappropriate for handling one or
more free edges, as observed by Bassily and Dickinson [5], who

introduced degenerated beam functions to overcome this restriction.
Orthogonal polynomials represent another common set in the Ritz

approximation of plate problems. They were first introduced by Bath
[6], who discussed the comparison against results obtained with beam
characteristic functions [4] and simply-supported plate functions [7].
Different families of orthogonal polynomials were successively used by
other researchers [8,9], and sometimes in combination with the Gram-
Schmidt orthogonalization process [10]. Another procedure, con-
ceptually simpler, consists of using ordinary polynomials expansions,
where no orthogonalization process is performed. Examples can be
found in Refs. [11–13], where different boundary conditions can be
handled by proper modification of the trial functions. While different
kinds of polynomial expansions were found to have similar convergence
properties, they are generally characterized by dissimilar stability
properties [14]. Oosterhout et al. [15] observed that simple poly-
nomials can be adopted up to 11 trial functions before becoming un-
stable. On the contrary, orthogonal polynomials satisfy the stability
conditions, consisting in the strong minimality in the energy space of
the relevant operator, and higher number of terms in the Ritz series can
be used [16].

Another popular choice is given by the expansion in trigonometric
series, with restriction to clamped – in this case making use of Lagrange
multipliers –, simply-supported and elastically restrained edges
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[17–19]. It is worth noting that this choice is particularly useful when
dealing with geometrically nonlinear analyses due to the possibility of
obtaining an exact solution of the compatibility equation [19,20]. Two
decades ago, Beslin and Nicolas [21] proposed a simple yet powerful set
of trigonometric functions, which can be readily applied to plates
having any combination of edge conditions and offers great numerical
stability at higher frequencies. In addition, the set involves simple al-
gebra and calculus and is very efficient from a computational point of
view since it can lead to highly sparse eigenvalue problems [22].

A comprehensive recent review regarding the admissible functions
used in the Ritz method is available in Ref. [23], where focus is given
on thin isotropic plates. Merits and demerits of six sets of functions are
discussed and compared in terms of convergence, computational time
and numerical stability.

When assessing the global response of isotropic plates in terms of
frequency parameters and buckling loads, the effect of different trial
functions on the convergence of the solution is relatively incon-
sequential, at least when the first few eigenvalues are of concern. One
of the main advantages of adopting efficient basis, such as orthogonal
polynomials, is given by the possibility of accurately capturing higher
modes [15]. On the contrary, the analysis of composite plates is more
challenging due to a series of complicating effects introduced by the
elastic couplings characterizing their constitutive law. Stone and
Chandler showed the inadequacy of sine series expansions when ap-
plied to the analysis of simply-supported anisotropic thin plates [24].
This inadequacy is mainly associated with bending/twisting coupling
effects: the inexact fulfillment of the natural boundary conditions de-
termines the onset of artificial constraints on the plate rotation at the
edges, which, in turn, leads to the over-prediction of the eigenvalues.
Similar findings were observed in Ref. [25], where sandwich plates
with composite faceplates were analyzed using a refined B-spline finite
strip approach. In those configurations where elastic coupling effects
are stronger, buckling loads computed by the finite strip method are
markedly smaller (with differences of the order of 25%) in comparison
with the over-stiff results derived in Ref. [26,27] using trigonometric
functions in the Ritz method. The difficulties in the convergence of the
Ritz method when applied to anisotropic plates are also discussed in
Ref. [28], where it is concluded that results using Ritz method can be
unsatisfactory depending on the lay-up and boundary conditions.

Complicating effects are exacerbated by extreme levels of aniso-
tropy, as demonstrated by Wu et al. [29], where the authors, through
comparison of different variational approaches, state that the Ritz
method suffers from very slow convergence due to the difficulties in
satisfying natural boundary conditions and the presence of highly lo-
calized deformations close to the boundaries. The application of the
method was restricted by the onset of ill-conditioning problems, de-
tected for a number of Legendre-type functions higher than 23.

With regard to the analysis of thick composite plates, efficient Ritz-
based approaches were developed in the context of Carrera’s Unified
Formulation (CUF) for the analysis of simply-supported plates in Ref.
[30–33]. Similarly, Fiedler et al. [34] proposed the use of trigonometric
functions in plate models based on a generalized higher-order equiva-
lent single layer theory. Within the CUF framework, different sets of
boundary conditions were considered by the authors, using polynomial
functions [35], Chebyshev [36,37] and Legendre polynomials [38,39].

Despite the vast amount of studies focused on the method of Ritz in
the last four decades, it is believed that many aspects associated with its
application to the analysis of highly anisotropic thin and thick plates
are still unexplored and not covered by the literature. First, the Ritz
implementations available in the literature suffer from restrictions in
terms of degrees of freedom that can be successfully handled. In the
great majority of the cases, 10–20 functions are adopted along the two
directions [28–34,36,37,40]. This restriction prevents the possibility of
obtaining accurate upper-bound predictions for plates characterized by
high degree of anisotropy, where several terms are generally necessary.
To this aim an efficient implementation is necessary, as the one

proposed in this work.
A second aspect of great interest is the evaluation of the effects of

different kinds of anisotropy on the convergence properties of the Ritz
method. To the best of the authors’ knowledge, just a few studies have
tackled this topic but, in general, they are restricted to specific cases,
and do not provide a comprehensive presentation of the subject in-
volving thick laminates. In addition, no systematic study was found
about the effects of different admissible functions on the convergence,
accuracy and computational burden of the Ritz method, when applied
to thick and moderately thick plates.

The present paper aims at filling these gaps by using a formulation
capable of considering several theories, from CLT up to high-order ki-
nematic theories, in a way suitable for studying highly anisotropic thick
and moderately thick plates within a unified modeling framework.

2. Theoretical framework

This section provides an overview of the Ritz-based variable-kine-
matic formulation. While further details of this approach can be found
in previous works of the authors [37,41], emphasis is here given on the
choice among diverse admissible functions and the efficient evaluation
of the Ritz in-plane integrals. This latter aspect is a focal point for the
subsequent derivation of refined solutions for plates characterized by
high degree of anisotropy. It is worth noting that the efficient compu-
tation of the Ritz integrals as explained below has been similarly ap-
plied to the in-plane integrals arising from CLT-based plate models,
which are not reported here for the sake of brevity.

2.1. Variable-kinematic formulation

The variable-kinematic formulation is developed in the context of a
displacement-based approach, referring to the Principle of Virtual
Displacements (PVD). A laminated plate composed of an arbitrary
number of plies Nl is considered, and a sketch is reported in Fig. 1. The
x- and y-axis are directed along the longitudinal and transverse direc-
tions, respectively, while the z-axis is normal to plate midsurface to
obtain a right-handed system. The edges are numbered from 1 to 4 in
according to the convention reported in the figure, which is adopted
next for specifying the boundary conditions.

The variational statement is here expressed with regard to the free-
vibration and buckling problems. The expression is:
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where the integration is carried out over the domain Ω, defined as
×a b[0 ] [0 ]. The vector uk collects the three displacement components

of the generic ply k; the vectors k
p∊∊ and k

n∊∊ are those relative to the in-
plane and normal components of the small-displacement
Green–Lagrange strain tensor, respectively. In a similar fashion, the
stress vector σ is partitioned into in-plane and normal components σ k

p

and σ k
n . In the context of buckling analysis, the additional contributions

p
k

nl

T
∊∊ and σp

k
0are accounted for, representing the nonlinear part of the

Green-Lagrange strain tensor and the pre-buckling stress distribution,
whose expression can be found in [37].

Fig. 1. Laminate with coordinate system, dimensions and numbering of the edges.
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which leads to the expression:
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where the terms Dn and Dp are matrices of differential operators de-
fining the strain–displacement relations that are detailed in Ref. [37].

The underlying kinematic theory adopted here refers to the
Generalized Unified Formulation (GUF), proposed by Demasi [42,43],
representing an extension of the well-known Carrera’s Unified For-
mulation (CUF) (see, for instance, [44,45]). Within this framework, and
after introducing a nondimensional reference system where

= =ξ η,x
a

y
b

2 2 and =ζ z
h
2 , the displacement field components are ax-

iomatically expressed as the product of thickness functions and gen-
eralized displacement components:
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where the sum is implied with respect to the repeated index αur and the
thickness functions Fαur are taken as proper combinations of Legendre
polynomials [36,37,41,44–46]. According to Eq. (4), each displacement
component ur can be expanded independently from the other ones.
Both equivalent single-layer (ED) and layerwise (LD) theories can be
retrieved in the context of the same framework, depending on the as-
sembly procedure of the governing equations. Each theory is identified
with an acronym denoting the typology of the kinematic description
and the order of expansion of each displacement component. For ex-
ample, the theory ED332 stands for an equivalent single-layer theory
where the global displacements ux and uy are expanded up to third
order whilst uz is described by a second-order expansion. Likewise, the
theory LD444 identifies a layerwise kinematics where the local dis-
placement components u u,x

k
y
k and uz

k in each layer k of the laminate are
expanded up to fourth order. Note also that ED110 corresponds to the
assumed displacement field of the well-known first-order shear de-
formation theory, which will be denoted in the following by the
common acronym FSDT.

2.2. Ritz approximation

The generalized displacement components urα
k

ur of Eq. (4) are
functions of the in-plane coordinates ξ and η, as the dependency on the
thickness-wise coordinate is condensed in the thickness functions Fαur .
Referring to the Ritz method, they are approximated by means of global
admissible functions, whose general expression is given by:
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k

u i rα i
k
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where Nu ir is the generic ith function, R and S denote the number of
terms of the approximation along the x and y direction, respectively.
For a rectangular domain, the trial functions are represented by as-
suming separation of variables as:

= = … = …N ξ η ϕ ξ ψ η m R n S( , ) ( ) ( ) 1, , 1, ,u i u m u nr r r (6)

where the functions are identified so that the relation between the

indexes m n, and i is given by:

= − +i S m n( 1) (7)

The Ritz approximation of the PVD is readily obtained after sub-
stituting Eq. (6) into Eq. (3). By adopting a compact notation, where the
separation between thickness and in-plane integrals is highlighted, the
expressions reads:

+ = −∂ ∂ ∂ ∂δ δu Z Z u u Z u( ) ¨ri u u RS u u G u u ij
defg

sj ri u u ρ u u ij
defg

sj
T

( ) ( ) ( ) ( )
T

r s r s r s r s r sI I (8)

where the sum is intended with respect to the repeated indexes r s i, , and
j. The matrices ∂ ∂ ∂ ∂Z Z,u u RS u u G( ) ( ) ( ) ( )r s r s and Zu u ρr s are achieved after in-
tegrating and assembling the thickness integrals as discussed in Ref.
[38]; note that, according to the compact notation of Eq. (8), the
symbol ∂( ) denotes that the terms composing ∂ ∂Z u u RS( ) ( )r s may or may
not be characterized by the presence of a derivative with respect to z of
the thickness function. The term u u ij

defg
r sI represents the generic ijth

component of the matrix collecting the in-plane integrals of the ad-
missible functions, which is sometimes referred to as Ritz integrals
matrix. In particular, their expression is given as:
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where the notation A( )ij is used to denote the component ij of the
generic matrix A, while a compact notation is adopted for denoting the
differentiation with respect to ξ and η as:
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According to Eqs. (9) and (10) and the separation of variables in-
troduced in Eq. (6), the derivatives of the admissible functions are
written as:
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After substituting Eq. (11) into Eq. (9), the matrix of Ritz integrals
can be re-organized as:
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From the previous definitions, the stiffness and mass matrices K and
M are obtained by combining the Ritz and the thickness integrals ac-
cording to the Kronecker product:
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The thickness integrals appearing in Eqs. (13)–(15) can be easily
determined after analytically integrating the thickness functions along
the normal direction. On the other hand, the evaluation of the Ritz
integrals �u u

defg
r s can be a lengthy and onerous operation, thus affecting

the performance of the method. For this reason, its efficient evaluation
is outlined in the next paragraph.

The final form of the discrete governing equations is obtained as:

− + + =ω λM K G u 0( )2 (16)

where the free vibration problem is solved by neglecting the geometric
stiffness G, whilst the buckling analysis is conducted by setting to zero
the mass matrix M.

.

Within the context of the displacement-based approach considered 
here, the internal virtual work needs to be expressed in terms of the 
displacement components. This is accomplished by introducing the 3D 
constitutive law, defined as:



cussed later.
The square matrix �u u

defg
r s has dimensions ×RS RS. This means that,

potentially, several computations need to be performed when the
number of functions is not restricted to just a few terms. This difficulty
is here overcome by introducing the so called integrals kernels –matrices
of smaller dimensions collecting the integrals –, which are successively
expanded and properly assembled to obtain Eq. (9). The efficiency of
the approach is further improved with the help of the closed-form in-
tegration of the integral kernels themselves. This operation, which is
performed for all the admissible functions discussed in the present
work, is carried out by symbolic computations using Mathematica.

The two kernels, which are the integrals of the trial functions as-
sociated with the displacement components ur and us along the direc-
tions ξ and η, are indicated as:
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It can be noted that the two matrices of Eq. (17) are characterized
by dimensions ×R R and ×S S, respectively. Their evaluation, which
suffices for the successive construction of the final matrix of Ritz in-
tegrals of Eq. (9), can thus be performed by computing just

× + ×R R S S( ) ( ) integrals. The kernels of Eq. (17) are computed for a
sufficiently large number of functions (up to 250) just once, and are
stored in a binary file. At every run, the kernels are simply loaded from
the binary file, and used to construct the matrix of Ritz integrals with a
minimum computational effort. By using the Kronecker product, the
kernel of the integrals u u

eg
r sI can be expanded as:
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where ISS is the identity matrix of dimension ×S S, and the resulting
matrix Iu u

df
r s has dimension ×RS RS.

Similarly, the expansion of the kernels u u
eg

r sJ is obtained as:
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where IRR is the identity matrix of dimension ×R R, and the expanded
matrix of integrals Ju u

eg
r s has dimension ×RS RS.

Recalling now Eq. (12), it is possible to express the matrix of the
Ritz integrals as the Hadamard elementwise product between the ex-
panded kernels of the integrals along the directions ξ and η (Eqs. (18)
and (19)):

� = ∘I Ju u
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u u
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r s r s r s (20)

For clarity, a graphical description of the procedure for evaluating
the Ritz integrals is provided in Fig. 2. Without loss of generality, it is
considered the case where an expansion ×3 2 is adopted. Highlighted is
the way the kernels are initially expanded (Eqs. (18) and (19)) and the
resulting matrices are successively multiplied through the Hadamard
product (Eq. (20)).

2.4. Admissible functions

As outlined in the Introduction, different sets of functions can be
used for approximating the displacement field and this choice plays a
crucial role in the development of a Ritz-based procedure. Indeed,
several properties are affected by the functions adopted, including the

convergence, efficiency, accuracy and numerical stability of the
method. In the present work, two classes of orthogonal polynomials are
considered, namely Legendre and Chebyshev polynomials, and two sets
of trigonometric functions. The first is referred to as Navier-type ex-
pansion, consisting in the set of sines and cosines descending from the
classical Navier-solution of those problem for which an exact solution
can be sought. The second trigonometric set is denoted as extended
trigonometric, and represents an enrichment of the Navier-type basis
resulting from the introduction of linear polynomial contributions. The
implementation of different sets of functions allows one to compare the
quality of the various choices, and demonstrates the inadequacy of
improperly adopting the Navier-type expansion, unless special condi-
tions are met.

2.4.1. Orthogonal polynomials
In the case of orthogonal polynomials, the one-dimensional func-

tions ϕ ξ( )u mr and ψ η( )u nr are expressed by taking the product with
boundary functions, properly selected to impose the fulfillment of the
essential boundary conditions:
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The coefficients e r1 and e r2 can be either 0 or 1, and are chosen
depending on the boundary conditions [36]. In the particular case of
CLT, the coefficients can be 0, 1 or 2 for free, pinned and clamped
conditions, respectively.

Although any class of orthogonal polynomials could be im-
plemented within the present framework, the functions pm and pn are
here expressed using Chebyshev or Legendre polynomials. In the first
case, the polynomials are expressed as:

= − =p χ l χ l m n( ) cos[( 1)arccos( )] with ,l (23)

while for the case of Legendre polynomials the expression is defined
according to the recursion formula:

= = =
+ −

+
=+

−p p χ p
l χp lp

l
l m n1; ;

(2 1)
1

with ,l
l l

0 1 1
1

(24)

2.4.2. Trigonometric functions
The second class of functions discussed here is given by trigono-

metric functions. Their use is mainly restricted to the case of simply-
supported boundary conditions, and have been widely adopted in the
literature [30–34]. One of the main reasons motivating their popularity
is the simplicity of the resulting in-plane integrals. In addition, the re-
sulting matrices do not suffer from ill-conditioning problems, as it may
happen for some class of polynomial expansions.

In the Navier-type expansions, the three components of the dis-
placement field are expressed as:
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where the relation between the indexes i m, and n is given by Eq. (7).
The expressions of Eq. (25) are suitable for modeling simply-supported
boundary conditions, meaning that the out-of-plane displacement and
the component tangential to the panel edges are assumed to be null
along the plate boundaries.

Similarly, the extended trigonometric representation is achieved by
adding linear polynomial contributions to Eq. (25) as:

.

2.3. Efficient computation of the Ritz integrals

The efficient evaluation of the matrix collecting the Ritz integrals is 
one of the significant aspects of the present formulation. The approach 
discussed here is developed to guarantee improved performance, a 
necessary feature for dealing with highly anisotropic plates, as dis-
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Combination of trigonometric and polynomial terms have been
successfully used in the literature, for example see Monterrubio and
Ilanko [47]. The enrichment of the basis by means of linear polynomial
terms is essential for guaranteeing the completeness of the basis in the
energy norm [48], as shown in the next section. The polynomial con-
tributions are quite often neglected, and the basis is formally identical
to the displacement field description adopted in the context of Navier-
type solutions. As such, it can be successfully applied to those cases
where an exact Navier-type solution is available. In all the other cases,
convergence to the exact solution cannot be achieved if Eq. (25) is
adopted.

It is finally remarked that classical Fourier analysis could be used for
improving the convergence of the results [49–53]. However, this is not
the approach adopted here and the derivatives of the displacement field
are assumed to be term-by-term differentiable.

3. Results

This section aims at illustrating and discussing some results on free
vibration and buckling of highly anisotropic rectangular plates obtained
from Ritz models based on CLT and the variable-kinematic formulation.
All the plates analyzed throughout the section are made of the material
P100/AS3501, taken from Refs. [54,29], whose elastic properties are
the following: E1 =369 GPa, E2 =5030MPa, G12 =5240MPa, and
ν12 =0.31. In addition, it is assumed that = =G G G13 23 12 and

= =ν ν ν13 23 12, and the density ρ is taken equal to 1500 kg/m3. As seen,
this material is characterized by a high orthotropy ratio >E E/ 701 2 ,
whose effect is to exacerbate the amount of anisotropy of all the lay-ups
considered, and highlight any potential convergence issue of the dis-
cretization method. All the results are expressed in terms of the

nondimensional quantities ωi and Nx for the free vibration and the
buckling force per unit length, respectively, as:

= =ω ω a
h

ρ
E

N N a
E hi i x x

2

2

2

2
3 (27)

where a is the plate longitudinal dimension, h is the thickness, ρ the
density and E2 the transverse Young’s modulus; Nx denotes the force per
unit length directed parallel to the x axis, and applied at the edges at

=x const.
This section is organized as follows: thin plates are analyzed first in

Section 3.1 by considering orthogonal polynomials and extended tri-
gonometric functions. The effects due to different kinds of elastic cou-
plings, material anisotropy as well as the role of boundary conditions
are assessed. Novel benchmark results are also obtained by exploiting
the efficiency of the present implementation for highly anisotropic
plates, where a huge number of terms in the Ritz series is required to
achieve a satisfactory level of accuracy of the solution. The investiga-
tion is then extended to the case of thick plates in Section 3.2. The
requirements on the completeness of the admissible set are discussed in
Section 3.3, and exemplary results are provided for highlighting po-
tential errors associated with an improper use of a Navier-type expan-
sion. Finally, the computational efficiency of the various sets of func-
tions is discussed in Section 3.4, and the superiority of Legendre
polynomials is illustrated.

3.1. Thin plates

3.1.1. Anisotropic laminates with different elastic couplings
A set of four thin-plate configurations is initially analyzed for

highlighting the effects of different kinds of elastic couplings on the free
vibration response. The results are presented in the context of CLT,
which is commonly adopted for thin plate analysis and for validating
novel numerical techniques (see, for instance, Refs. [55–57]). Note that
rotatory inertia is neglected from the following computations. Square
plates are considered, and characterized by four distinct lay-ups,

Fig. 2. Construction of the Ritz integrals matrix ( =R 2 and =S 3): evaluation of the Ritz kernels, expansion and final assembly.



hereinafter denoted as:

• Lay-up L1: [45/45]
• Lay-up L2: [0/90]
• Lay-up L3: −[45/ 45]
• Lay-up L4: [0/45]

It is worth noting that the nature of the elastic couplings exhibited
by the above lay-ups in terms of the familiar A B, and D matrices of CLT-
based models (see, e.g. [58–60]) is inherently different. The first lay-up
is symmetric and characterized by bending/twisting coupling; the
second one is cross-ply, non-symmetric with coupled in-plane and out-
of-plane behavior due to not vanishing terms B11 and = −B B22 11; L3
displays another sort of coupling between in-plane and out-plane re-
sponse through the terms B16 and B26; finally, L4 is also a non-sym-
metric configuration and exhibits a fully populated ABD constitutive
relation.

Simply-supported boundary conditions are assumed along the four
edges. This means that, in addition to the out-of-plane displacement,
the tangential in-plane component is prevented from motion, while the
normal one is free. In this first assessment, the admissible functions are
Legendre polynomials – it is here anticipated that identical results are
obtained using Chebyshev polynomials – and extended trigonometric
functions. The first three nondimensional frequencies ωi are summar-
ized in Table 1 for an increasing number =R S of functions. It is noted
at the outset that computations using extended trigonometric functions
are shown for a limited number of 50 functions along each direction,
due to their computational inefficiency, as addressed in more detail
later in Section 3.4. On the contrary, Legendre polynomials can be
easily employed to consider higher number of terms in the Ritz series,
and frequency parameters are presented for R up to 100.

The comparison is presented against refined finite element analysis,
obtained using Abaqus S4 and S4R four-node shell elements. A mesh
size of ×400 400 elements is defined on the basis of a preliminary
study aimed at guaranteeing convergence of the finite element solution
up to the second digit. As far as S4R and S4 are general purpose

elements, the numerical models are realized by considering an artifi-
cially high ratio a h/ =10000, in order to keep at minimum shear de-
formation effects. Note that the sole scope of adopting such a high value
is to perform a fair comparison with CLT-based results obtained using
Ritz. For layup L2, the exact Navier-type solution is available, which is
then taken as a reference instead of the finite element one.

The results of Table 1 illustrate the excellent level of agreement
between reference results and those obtained with the Ritz discretiza-
tion. The percent differences, reported in the parenthesis, provide a
clear insight into the convergence of the solution and the differences
arising from the adoption of trigonometric and Legendre trial functions.
It can be observed that orthogonal polynomials lead to results which are
almost identical to the reference solutions, provided the number of
functions is sufficiently high.

The most critical case is given by lay-up L1, which is the one
characterized by the slowest convergence rate. For this case, the results
are still slightly different from the reference ones, even when 100
functions are used along both the directions. This behaviour is moti-
vated by the strong bending/twisting coupling, which makes the solu-
tion unavailable by separation of variables, as demonstrated by Wang
[61].

From Table 1, it is also clearly visible that convergence is much
faster for Legendre polynomials than trigonometric functions. For lay-
up L1, errors higher than 6% are obtained on the fundamental fre-
quency of the plate even for trigonometric expansions of 50 terms. The
only exception is given by lay-up L2, where the present solution shows
no difference with the exact solution. Indeed, L2 is a cross-ply config-
uration, for which the exact solution exists in trigonometric form. For
this special case, the exact solution is thus exactly matched by the tri-
gonometric set assumed in the Ritz method.

It is worth noting that the Ritz results of Table 1 are upper bound
predictions. This is not the case for the Abaqus S4R results, which are
based upon reduced integration, thus convergence from above cannot
be guaranteed. When comparing Ritz solutions with Abaqus S4 results,
it is observed that frequency values obtained with S4 elements are
higher than predictions computed by the Ritz method using Legendre

Table 1
Nondimensional frequencies ωi for SSSS thin square plates, using CLT and ×R R functions. (Note: a used as reference for percent difference evaluation).

ω1 ω2 ω3

Layup R Legendre Extended trig. Legendre Extended trig. Legendre Extended trig.

L1 5 23.7290 (7.88) 26.6999 (21.39) 37.2524 (2.75) 42.1941 (16.38) 61.1104 (14.32) 62.3625 (16.67)
10 22.8746 (4.00) 25.4317 (15.62) 36.2590 (0.01) 39.1541 (7.99) 53.6133 (0.30) 58.1908 (8.86)
20 22.4097 (1.88) 24.4310 (11.07) 36.2547 (0.00) 37.8074 (4.28) 53.5257 (0.14) 56.1407 (5.03)
50 22.1228 (0.58) 23.4815 (6.76) 36.2546 (0.00) 36.9171 (1.82) 53.4731 (0.04) 54.7166 (2.36)
100 22.0258 (0.14) / 36.2546 (0.00) / 53.4556 (0.00) /
S4R-S4 21.9952a–22.2083 36.2562a–36.2566 53.4535a–53.4928

L2 5 14.5082 (0.02) 14.5056 (0.00) 40.5196 (0.37) 40.3701 (0.00) 40.5196 (0.37) 40.3701 (0.00)
10 14.5056 (0.00) 14.5056 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00)
20 14.5056 (0.00) 14.5056 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00)
50 14.5056 (0.00) 14.5056 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00) 40.3701 (0.00)
100 14.5056 (0.00) / 40.3701 (0.00) / 40.3701 (0.00) /
Exact 14.5056a 40.3701a 40.3701a

L3 5 23.8777 (0.15) 26.0692 (9.35) 45.3719 (1.81) 49.4182 (10.8) 45.3719 (1.81) 49.4379 (10.93)
10 23.8452 (0.02) 25.0085 (4.90) 44.6529 (0.19) 47.0179 (5.50) 44.6529 (0.19) 47.0189 (5.50)
20 23.8415 (0.00) 24.4367 (2.50) 44.5865 (0.04) 45.8972 (2.99) 44.5865 (0.04) 45.8973 (2.99)
50 23.8407 (0.00) 24.0836 (1.02) 44.5692 (0.01) 45.1430 (1.29) 44.5692 (0.01) 45.1431 (1.29)
100 23.8406 (0.00) / 44.5669 (0.00) / 44.5669 (0.00) /
S4R-S4 23.8409a–23.8409 44.5668a–44.5729 44.5668a–44.5729

L4 5 17.3976 (0.48) 17.9870 (3.88) 31.7112 (1.66) 33.7065 (8.06) 52.3862 (1.85) 53.3507 (3.73)
10 17.3405 (0.15) 17.6933 (2.19) 31.3584 (0.53) 32.5094 (4.22) 51.6209 (0.37) 52.5177 (2.11)
20 17.3235 (0.05) 17.5289 (1.24) 31.2574 (0.20) 31.9391 (2.39) 51.5048 (0.14) 52.0596 (1.22)
50 17.3168 (0.01) 17.4107 (0.56) 31.2094 (0.05) 31.5511 (1.15) 51.4497 (0.03) 51.7468 (0.61)
100 17.3152 (0.00) / 31.1973 (0.01) / 51.4358 (0.01) /
S4R-S4 17.3145a–17.3188 31.1935a–31.2202 51.4323a–51.4627



polynomials. Recalling that FEM results are here obtained with highly
refined meshes, it can be noted the better accuracy-to-degrees-of-
freedom ratio offered by the Ritz approach. With this regard, the total
number of Ritz degrees of freedom, for R equal to 100, is 10000, two
orders of magnitude less than Abaqus models.

Finally, it is observed that, for the examples here proposed, the
elastic coupling responsible for the most detrimental effects on the
convergence is the bending/twisting one. Membrane-bending/twisting
coupled behaviour, as those characterizing the constitutive law of lay-
ups L1, L3 and L4, have a minor impact on the convergence of the
solutions.

3.1.2. Effect of flxural anisotropy
Given the effects of bending/twisting coupling on the convergence

of the method, another example is considered in Table 2 involving a
thin plate made of one single ply only with fibers oriented at θ degrees.
Results with three different angles =θ 15,30,45 are reported in order to
highlight how the results are affected by increasing amount of flexural
anisotropy. The values in Table 2 refer to the first natural frequency and
the nondimensional buckling force per unit length according to Eq.
(27). The comparison is presented against refined Abaqus results ob-
tained with S4R and S4 elements.

The results clearly show that the convergence becomes markedly
slower as the flexural anisotropy, which is maximum when θ is equal to
45, is increased. This conclusion holds both for vibration and buckling
analysis. With this regard, increasing values of flexural anisotropy
render trigonometric functions more and more inadequate. The errors
with respect to finite element results for the configuration with θ equal
to 15 are well below 1%, while they are more than 3% and 6% when θ
is equal to 30 and 45.

It is worth noting that the errors achieved for the first natural fre-
quency are, in general, smaller than those relative to the buckling force,
as also observed by Stone and Chandler [24]. The main reason for this
discrepancy is given by the relation between the result and the eigen-
value of the problem, and not by the kind of problem itself. More
specifically, the natural frequency depends on the square root of the
problem’s eigenvalue, while the buckling force depends linearly on the
eigenvalue itself. It can be shown that ≈ + −e e 1 1ω buckle , where eω
and ebuckle are the ratios between the approximate and the exact solu-
tions associated with the frequency and buckling force prediction, re-
spectively.

For the sake of completeness, the plot in Fig. 3 illustrates the results
obtained for various angles θ ranging from 0 to 90 degrees by using
Legendre and trigonometric functions in the Ritz method, as compared
to Abaqus S4R results.

3.1.3. Effect of boundary conditions
The effect of anisotropy cannot be analyzed without establishing a

link with the boundary conditions. Indeed, the solution for plates
characterized by the same lay-up can exhibit different convergence
behaviour on the basis of the constraints specified at the boundaries.
This effect is assessed in Table 3, both for the free vibration and
buckling response of the same plate of Example 2 made of one single ply
oriented at 45 degrees. According to the convention adopted, the first
and the third edges are those at = −ξ 1 and = +ξ 1, while the second
and the fourth ones are those at = −η 1 and = +η 1, respectively.

The results are presented by using a relatively low number of
Legendre polynomials in the Ritz series, = =R S 20, and by exploiting
the efficiency of the implementation proposed in Section 2.3 to derive
highly refined results with ×100 100 functions.

As seen from Table 3, the presence of natural boundary conditions is
responsible for increased difficulties in the convergence of the solution
and higher errors for a given number of admissible functions. Indeed,
all of the conditions characterized by combinations of free and simply-
supported conditions are the most challenging ones. This is mainly due
to the difficulties of the assumed approximation, obtained by separation
of variables, to approximate the vanishing moment condition along the
edges. On the contrary, it can be seen that clamped conditions, which
are of essential type, tend to facilitate the convergence of the solution.
Whenever two or more clamped edges are present, the use of ×20 20
functions is generally sufficient to obtain accurate results. In this sense,
the fully clamped plate represents the most favorable case, and the use
of 20 functions guarantees convergence up to the fourth digit.

The role played by the material anisotropy is assessed in Table 4,
where the fundamental frequency parameter and the compressive
buckling force are reported by comparing Abaqus results and Ritz so-
lutions computed with = =R S 50. All of the elastic constants are kept
unchanged expect for E1, which is varied to obtain different values of
orthotropy ratios. As expected, the errors tend to get smaller as the ratio
E E/1 2 is reduced, irrespective of the constraints along the plate
boundary. Indeed, smaller values of the orthotropy ratio are associated
with smaller degrees of flexural anisotropy. The drop of the errors when
the ratio is reduced from the original value of 73.36 to 20 is noticeable.
It is worth noting that the materials commonly used nowadays in ad-
vanced composite structures are rarely associated with orthotropy ra-
tios higher than 30–40. However, the reference case with =E E/ 73.361 2
is selected to exaggerate the effects of elastic couplings and show the
capabilities of the method to properly handle configurations involving
extreme levels of anisotropy.

3.1.4. Benchmark results for highly anisotropic plates
The numerical efficiency of the proposed Ritz implementation is

Table 2
Nondimensional frequencies ω1 and buckling force Nx for SSSS square plates with lay-up θ[ ], using CLT and ×R R functions. (Note: a used as reference for percent difference evaluation).

=θ 15 =θ 30 =θ 45

Legendre Extended trig. Legendre Extended trig. Legendre Extended trig.

ω1 5 24.6447 (0.45) 25.2133 (2.76) 23.5729 (3.83) 25.7182 (13.27) 23.7290 (7.88) 26.6999 (21.39)
10 24.5725 (0.15) 24.9119 (1.54) 23.1193 (1.83) 24.7275 (8.91) 22.8746 (4.00) 25.4317 (15.62)
20 24.5464 (0.05) 24.7450 (0.86) 22.8890 (0.81) 24.0354 (5.86) 22.4097 (1.88) 24.4310 (11.07)
40 24.5378 (0.01) 24.6516 (0.48) 22.7773 (0.32) 23.5741 (3.83) 22.1711 (0.80) 23.6767 (7.64)
50 24.5366 (0.01) 24.6313 (0.39) 22.7559 (0.23) 23.4614 (3.33) 22.1228 (0.58) 23.4815 (6.76)
100 24.5349 (0.00) / 22.7151 (0.05) / 22.0258 (0.14) /
Abaqus S4R-S4 24.5350a–24.5399 22.7043a–22.7968 21.9952a–22.2083

Nx 5 57.5058 (0.97) 60.3686 (6.00) 43.4565 (11.79) 52.0261 (33.84) 38.6798 (27.53) 44.9187 (48.10)
10 57.1270 (0.30) 58.8198 (3.28) 40.2498 (3.54) 46.7365 (20.23) 32.7145 (7.86) 38.8464 (28.07)
20 57.0064 (0.09) 57.9766 (1.80) 39.4905 (1.59) 43.8220 (12.73) 31.4656 (3.74) 36.2285 (19.44)
40 56.9669 (0.02) 57.5164 (0.99) 39.1168 (0.63) 42.0201 (8.10) 30.8137 (1.59) 34.7958 (14.72)
50 56.9614 (0.01) 57.4174 (0.81) 39.0449 (0.44) 41.5943 (7.00) 30.6813 (1.15) 34.4867 (13.70)
100 56.9534 (0.00) / 38.9076 (0.09) / 30.4147 /
Abaqus S4R–S4 56.9535a–56.9753 38.8728a–39.1825 30.3310a–30.9177



here exploited to obtain additional solutions for a square plate with one
ply oriented at θ. The following results could be used as a valuable
reference for future benchmarking of novel numerical methods devoted
to the analysis of anisotropic plates, where no exact solutions are
available. On the basis of the results discussed in previous examples,
simply-supported boundary conditions are assumed, as they constitute
a challenging set of conditions for the convergence and accuracy of the
method in the presence of high flexural anisotropy. Highly refined
upper bound predictions are reported in Table 5 for different orthotropy
ratios using up to ×250 250 Legendre functions. To the best of the
author’s knowledge, such a level of refinement is reported for the first
time in the literature. Indeed, only few dozens of admissible functions
along each direction have been typically adopted in previous applica-
tion of the Ritz method to anisotropic laminates. As shown before, a
small number of terms in the Ritz approximation is inadequate for
guaranteeing proper accuracy for problems characterized by extreme
anisotropy. On the contrary, the results of Table 5 with = =R S 250 can
be considered as very accurate upper bound solutions, which may prove
particularly useful as no exact results can be derived for the test cases

under investigation.

3.2. Thick plates

This second part is devoted to the analysis of moderately thick and
thick plates, with the aim of investigating how the effects of extreme
anisotropy on the numerical behavior of the Ritz solution are influenced
by the plate thickness ratio. The efficiency of the present implementa-
tion allows to manage Ritz approximations with a huge number of
admissible functions, thus leading to vibration and buckling results for
highly anisotropic plates with a degree of refinement not available in
previous research efforts.

The first set of results considers square plates characterized by
width-to-thickness ratios a h/ ranging from 5 to 100. Two distinct
configurations, characterized by elastic couplings of different nature,
are analyzed. The first configuration is a symmetric lay-up with three
plies at −[45/ 45/45], while the second is a non-symmetric configuration
with two plies at ±[ 45].

The first fundamental frequency of each case is reported in Table 6,

Fig. 3. Comparison between Ritz and finite element results for different ply angles θ. Ritz results obtained using 50× 50 functions: (a) first nondimensional frequency, (b) nondimensional
buckling force.

Table 3
Effect of boundary conditions on the nondimensional frequencies ω1 and buckling force Nx of thin square plates, using CLT.

ω1 Nx

×20 20 ×100 100 Abaqus S4R ×20 20 ×100 100 Abaqus S4R

CCCC 40.7737 (0.00) 40.7733 (0.00) 40.7744 55.3424 (−0.02) 55.3414 (−0.02) 55.3521
CCCF 20.2789 (0.11) 20.2587 (0.01) 20.2575 21.6492 (0.10) 21.6263 (0.00) 21.6266
CCCS 35.5083 (0.07) 35.4818 (0.00) 35.4826 46.8415 (0.08) 46.7962 (−0.02) 46.8034
CCFF 8.4186 (0.00) 8.4186 (0.00) 8.4190 11.3127 (−0.01) 11.3127 (−0.01) 11.3133
CCSF 18.5710 (0.12) 18.5478 (0.00) 18.5485 20.2404 (0.17) 20.2049 (−0.01) 20.2064
CCSS 30.8442 (0.86) 30.6018 (0.06) 30.5823 42.8148 (1.62) 42.1822 (0.11) 42.1342
CFCF 19.4496 (0.15) 19.4214 (0.01) 19.4203 20.5305 (0.06) 20.5162 (−0.01) 20.5175
CFFF 2.1652 (0.23) 2.1597 (−0.03) 2.1603 0.7140 (0.29) 0.7115 (−0.06) 0.7119
CFSF 9.7317 (0.13) 9.7199 (0.01) 9.7193 6.8058 (0.13) 6.7970 (0.00) 6.7968
CSCF 20.1439 (0.12) 20.1213 (0.01) 20.1202 21.4780 (0.13) 21.4503 (0.00) 21.4507
CSFF 4.6943 (0.12) 4.6887 (0.00) 4.6889 3.5002 (0.12) 3.4956 (−0.01) 3.4959
CSSF 18.0708 (0.16) 18.0424 (0.00) 18.0424 19.7576 (0.25) 19.7068 (−0.01) 19.7083
SCSC 32.3753 (0.13) 32.3324 (0.00) 32.3328 44.0880 (0.11) 44.0351 (−0.01) 44.0404
SCSF 9.3224 (0.18) 9.3057 (0.00) 9.3058 6.6576 (0.21) 6.6431 (0.00) 6.6434
SCSS 26.2909 (0.89) 26.0755 (0.06) 26.0598 36.2924 (0.25) 36.2020 (0.00) 36.2020
SFSF 8.2593 (0.22) 8.2410 (0.00) 8.2412 6.0182 (0.16) 6.0085 (0.00) 6.0087
SSFF 2.2628 (7.31) 2.1195 (0.52) 2.1086 1.9831 (15.17) 1.7399 (1.05) 1.7219
SSSF 9.0843 (0.52) 9.0395 (0.03) 9.0372 6.5108 (0.63) 6.4721 (0.03) 6.4702
SSSS 22.4097 (1.88) 22.0258 (0.14) 21.9952 31.4656 (3.74) 30.4147 (0.28) 30.3310
SFFF 3.5083 (0.03) 3.5066 (−0.01) 3.5071 1.4845 (−0.02) 1.4845 (−0.02) 1.4848



where various kinematic theories are adopted. FSDT is applied by
considering two different values of the shear factor. In the first case, the
shear factor is taken unitary; in the second case, denoted with FSDT*,
the shear factor is computed by adopting the technique implemented in
the Abaqus S4-family elements [62]. For this specific case, the shear
factor is equal to 0.7420 for the first layup, and 0.0677 for the second.
In addition, the equivalent single layer theories ED332 and ED554 and the
layerwise LD222 are employed. The comparison of the Ritz predictions
using Legendre polynomials is presented against Abaqus 2D, using S4R
elements, and 3D analyses. The latter are performed by making use of
C3D8I elements, 8-node elements with incompatible modes. The mesh
sizes, defined after a preliminary convergence study, are defined by
considering:

• ×100 100 elements along the planar directions, and 4 elements per
ply for >a h/ 10

• ×80 80 elements along the planar directions, and 8 elements per ply
for ⩽a h/ 10

The choice is motivated by the prevalent role played by the trans-
verse shear deformations as the ratio a h/ becomes smaller. It follows
that thicker configurations, as it is the case for =a h/ 5 and 10, need to
be described with a higher through-the-thickness refinement. In this

cases, the in-plane description is reduced to 80 elements to mitigate the
computational burden.

As observed from Table 6, the plate response becomes increasingly
dominated by the through-the-thickness behavior as the ratio a h/ is
reduced. It is noted that the refinement along in-plane directions given
by the increase of terms R in the assumed Ritz series becomes less and
less important, and what drives the accuracy of the solution is the en-
richment of the assumed kinematic description rather than the adoption
of more admissible functions. For example, for a thick plate with layup

−[45/ 45/45] and =a h/ 5, the deviation of the Ritz prediction from the
reference 3D analysis goes from approximately 10.7% to only 10.5% by
changing R from 10 to 60 when the plate is modeled according to FSDT.
Instead, only 10 functions are needed to have an accuracy of approxi-
mately 1.6% when the theory is changed to ED554. Thus, in this case, the
best tradeoff in terms of degrees of freedom is achieved by increasing
the order of the theory while keeping relatively low the number of
admissible functions. When moderately thick plates are analyzed, i.e.

=a h/ 25, it is more difficult to find the optimal balance between
number of trial functions and order of the theory. For this class of pa-
nels, the availability of a Ritz formulation capable of handling effi-
ciently several degrees of freedom could be important to detect the
model with the best accuracy-to-degrees-of-freedom ratio.

The results of Table 6 demonstrate also the advantages given by the
use of FSDT with a shear factor computed referring to an advanced
approach, as it is done in Abaqus. For instance, for the plates with lay-
up −[45/ 45/45], the results obtained with FSDT∗ are very close to those
available from high-order theories. However, the adoption of FSDT∗ can
give very inaccurate predictions in the presence of elastic couplings
associated with the plate non-symmetry, thus suggesting the adoption
of higher-order theories not demanding for a shear factor evaluation.
Indeed the approach adopted from Abaqus [62] to estimate the shear
correction factor relies on the assumption that shell section directions
are coincident with the principal bending directions. This is not the case
for the considered anti-symmetric angle-ply layup, which is character-
ized by a membrane-twisting coupling. The shear factor obtained from
the approach of Abaqus and employed in the FSDT∗ model is 0.0677:
this excessively low value underestimates the transverse shear stiffness
and yields excessively low eigenfrequencies. Since high-order theories
are capable of representing the through-thickness distribution of the
transverse shear, they do not require shear correction factors and can
provide more accurate results, as revealed by the percent differences
with the 3D finite element solutions.

As done in the case of thin plates, a comparison is here presented for
different choices of the admissible set when they are applied to the
analysis of thick plate problems. The results are obtained with models
based on ED332 theory and are plotted in Figs. 4 and 5 in terms of the
first natural frequency and the compressive buckling load, respectively.
In the first case, three lay-ups are considered, with plies at ±θ θ[ ],[ ] and

−θ θ θ[ / / ]. The buckling response of the anti-symmetric layup −θ θ[ / ] is
non bifurcational and shall hence be omitted. The results are obtained
by considering = =R S 30 functions and are reported in terms of

Table 4
Effect of material orthotropy on first nondimensional frequency and compressive buckling force. Square plate with one ply at 45. Results obtained using CLT and ×50 50 functions.

E E/1 2 CCSS SSSS SSFF

Ritz Abaqus S4R % diff Ritz Abaqus S4R % diff Ritz Abaqus S4R % diff

ω1 73.36 30.6645 30.5823 0.27 22.1228 21.9952 0.58 2.1556 2.1086 2.23
40 24.3788 24.3496 0.12 17.7266 17.6809 0.26 1.9457 1.9302 0.80
20 19.0884 19.0818 0.03 13.9644 13.9543 0.07 1.7513 1.7486 0.15
10 15.2679 15.2672 0.00 11.1561 11.1547 0.01 1.5743 1.5736 0.04

Nx 73.36 42.3478 42.1342 0.51 30.6813 30.3308 1.16 1.7999 1.7215 4.55
40 32.5627 32.4791 0.26 23.1637 23.0360 0.55 1.4696 1.4461 1.63
20 23.8467 23.8270 0.08 16.4563 16.4293 0.16 1.1914 1.1878 0.30
10 17.2488 17.2465 0.01 11.4683 11.4651 0.03 0.9597 0.9588 0.09

Table 5
Benchmark solutions derived using ×R R functions. Simply-supported plate with one ply
oriented at θ.

ω1 Nx

θ 30 45 60 30 45 60

E E/1 2 R=100 R=100
73.36 22.7151 22.0258 22.7151 38.9076 30.4147 24.1977
40 18.0025 17.6872 18.0025 26.8234 23.0524 19.3150
20 14.0540 13.9539 14.0540 17.7112 16.4281 15.0587
10 11.1989 11.1544 11.1989 11.8983 11.4641 11.7180

E E/1 2 R=150 R=150
73.36 22.7024 21.9934 22.7024 38.8649 30.3253 24.174
40 17.9979 17.6753 17.9979 26.8080 23.0188 19.307
20 14.0530 13.9513 14.0530 17.7082 16.4209 15.057
10 11.1988 11.1540 11.1988 11.8980 11.4633 11.717

E E/1 2 R=200 R=200
73.36 22.6964 21.9772 22.6964 38.8446 30.2806 24.1635
40 17.9959 17.6698 17.9959 26.8011 23.0031 19.3037
20 14.0526 13.9502 14.0526 17.7070 16.4179 15.0566
10 11.1987 11.1539 11.1987 11.8979 11.4630 11.7176

E E/1 2 R=250 R=250
73.36 22.6929 21.9674 22.6929 38.8328 30.2538 24.1571
40 17.9948 17.6666 17.9948 26.7974 22.9941 19.3018
20 14.0524 13.9496 14.0524 17.7064 16.4163 15.0563
10 11.1987 11.1538 11.1987 11.8978 11.4628 11.7176



percent differences between the values obtained by using the extended
trigonometric shape functions and those computed by means of Le-
gendre polynomials.

As observed from Fig. 4, the highest differences in the estimation of
the fundamental frequency occur when =θ 45. For the symmetric lay-
ups, the errors due to the adoption of extended trigonometric functions
tend to increase significantly for high values of a h/ . This behavior is
due to the poor performance of the trigonometric functions in de-
scribing the skewed pattern of the first mode shape associated with the
plate flexural anisotropy. As the thickness increases, the dominant role
played by the in-plane response is progressively replaced by the
through-the-thickness behavior, which does not depend upon the ad-
missible functions adopted. Despite the errors observed for thick plates
are relatively smaller – thus the use of trigonometric function is not as
detrimental as it is for thin plates –, it should be noticed that the errors
can be as high as 2% when a h/ is equal to 10. On the contrary, the anti-
symmetric configuration exhibits a response which is substantially in-
dependent of the plate thickness ratio. Indeed, the in-plane response

does not present a complex skewed pattern, and is properly described
even by trigonometric functions. It follows that no improvements are
achieved when the through-the-thickness response becomes prevalent.

With regard to the buckling response, as reported in Fig. 5, the
behaviour is similar to that observed for free vibrations. In this case, the
magnitude of the errors is higher, and the relation between the two
errors can still be approximated as eω and ebuckle. The maximum dif-
ference is observed for plates with a h/ =100, and θ equal to 42 and 43
for the one- an three-ply configurations, respectively. The sharp drop of
error observed for higher values of θ is due to a mode change from one
to two halfwaves, which is predicted by the trigonometric functions but
not by the Legendre ones. For clarity purposes, the reasons for these
discrepancies are further investigated in Fig. 6, where the mode shapes
are reported for a set of significant points associated with the one-ply
configuration with a h/ =100. Thus, apart from the effects associated
with shifted buckling modes, the shape of the curve still resembles the
one obtained for the free vibration problem.

Table 6
First nondimensional frequencies ω1 for SSSS square plates with different elastic couplings. (Note: a used as reference for percent difference evaluation).

Layup a/h R FSDT FSDT* ED332 ED554 LD222

−[45/ 45/45] 100 10 26.1231 (1.73) 26.0921 (1.61) 26.1046 (1.66) 26.0928 (1.61) 26.0899 (1.60)
20 25.8567 (0.69) 25.8294 (0.58) 25.8290 (0.58) 25.7989 (0.47) 25.7871 (0.42)
60 25.7573 (0.30) 25.7330 (0.21) 25.7174 (0.15) 25.6690 (−0.04) 25.6481 (−0.12)

Abaqus C3D8I-S4R: 25.6794a-25.6980

25 10 25.1194 (3.15) 24.8190 (1.92) 24.8958 (2.24) 24.7957 (1.83) 24.7655 (1.70)
20 24.9276 (2.37) 24.6409 (1.19) 24.6860 (1.37) 24.5533 (0.83) 24.5057 (0.63)
60 24.8636 (2.10) 24.5823 (0.95) 24.6037 (1.04) 24.4498 (0.40) 24.3963 (0.19)

Abaqus C3D8I-S4R: 24.3512a-24.5716

5 10 15.9845 (10.76) 14.6610 (1.59) 14.9577 (3.64) 14.6661 (1.62) 14.6294 (1.37)
20 15.9616 (10.60) 14.6454 (1.48) 14.9249 (3.42) 14.6282 (1.36) 14.5908 (1.10)
60 15.9546 (10.55) 14.6407 (1.45) 14.9101 (3.31) 14.6112 (1.24) 14.5731 (0.98)

Abaqus C3D8I-S4R: 14.4317a-14.6405

±[ 45] 100 10 23.8062 (0.92) 23.3349 (−1.07) 23.7503 (0.69) 23.7072 (0.50) 23.7266 (0.59)
20 23.8021 (0.91) 23.3296 (−1.10) 23.6882 (0.42) 23.6174 (0.12) 23.6443 (0.24)
60 23.8012 (0.90) 23.3284 (−1.10) 23.6674 (0.33) 23.5932 (0.02) 23.6142 (0.11)

Abaqus C3D8I-S4R: 23.5884a-23.3286

25 10 23.2574 (5.12) 18.4353 (−16.68) 22.5929 (2.11) 22.2454 (0.54) 22.3838 (1.17)
20 23.2521 (5.09) 18.4296 (−16.70) 22.5192 (1.78) 22.1676 (0.19) 22.2867 (0.73)
60 23.2509 (5.09) 18.4283 (−16.71) 22.5138 (1.76) 22.1610 (0.16) 22.2793 (0.70)

Abaqus C3D8I-S4R: 22.1252a-18.4295

5 10 16.1713 (20.14) 5.7214 (−57.50) 14.1054 (4.79) 13.5733 (0.84) 13.7696 (2.30)
20 16.1670 (20.11) 5.7212 (−57.50) 14.0858 (4.64) 13.5536 (0.69) 13.7486 (2.14)
60 16.1660 (20.10) 5.7211 (−57.50) 14.0768 (4.58) 13.5451 (0.63) 13.7390 (2.07)

Abaqus C3D8I-S4R: 13.4606a-5.7220

Fig. 4. Percent difference between the first frequency ω1 obtained with Legendre and extended trigonometric functions (R=S=30). Simply-supported plate, ED332 theory and lay-up: (a)
[θ], (b) [± θ], (c) [θ/-θ/θ].



3.3. Remarks on the completeness of admissible functions

An aspect that is sometimes overlooked when developing Ritz
models is the completeness of the assumed basis. With this regard, it is
useful to remind that completeness has to be defined with respect to the
strain energy norm, which is, in general, different from the L2 norm
[48]. The energy norm involves the first derivatives – or, in the parti-
cular case of CLT, even the second ones – of the displacement compo-
nents. The set of trial functions should then guarantee the ability of
getting arbitrarily close to the true strain energy value.

A classical example where the completeness requirement is not
fulfilled is encountered in the analysis of anisotropic simply-supported
plates by means of the Navier-type expansion of Eq. (25). Whilst this set

of functions satisfies the essential boundary conditions, the complete-
ness is guaranteed in the L2 norm, but not in the strain energy one. It
follows that the displacement field cannot represent a constant de-
formation field and, unless special conditions are met, the solution
cannot converge to the exact one. To clarify this aspect, an anti-sym-
metric plate with stacking ±[ 45] is considered. The plate is square and
simply-supported at its four edges. The convergence of the first fun-
damental frequency as R increases is reported in Fig. 7 for thin and
thick plates, characterized by a h/ equal to 100 and 5, respectively. The
results are obtained by considering ED332 theory, and a comparison is
provided for Ritz expansion based on Legendre polynomials and tri-
gonometric functions in the form of Eqs. (25) and (26). It is observed
that Legendre and extended trigonometric functions converge to the

Fig. 5. Percent difference between the buckling force per unit length Nx obtained with Legendre and extended trigonometric functions (R= S=30). Simply-supported plate, ED332 theory
and lay-up: (a) [θ], (b) [θ/-θ/θ].

Fig. 6. Comparison of mode shapes predicted by Legendre and extended trigonometric functions for lay-up [θ] and a h/ =100.



same solution, although with a different rate. On the contrary, the
Navier-type solution tends asymptotically to an overstiff solution. This
trend is more clear for thin plates, where the role played by in-plane
behavior is predominant. In any case, the differences are not negligible
even for the thick configuration. In this example, the errors are mainly
related to the coupling between in-plane and out-of-plane response
induced by the non-symmetry of the laminate. In fact, the bending
deflections happen in conjunction with in-plane displacements, and the
inability to describe a constant strain state has the effect of over-
constraining the solution.

It is instructive to discuss a second example, which could appear as
less intuitive, where the absence of polynomial contributions prevents
convergence to correct results. For this purpose, a symmetric lay-up is
considered, with one ply oriented at 45. Two length-to-thickness ratios
are analyzed in order to remark the role played by this parameter. The
first nondimensional vibration frequency of the plate is plotted in Fig. 8,
where the curves are relative to the solutions obtained using Legendre
polynomials and trigonometric shape functions, with and without the
linear polynomial terms (see Eqs. (25) and (26)). The results highlight a

completely different mechanisms with respect to the previous example.
In the case of thin plates, no distinction exists between the two trigo-
nometric solutions. The convergence rate is very low due to the high
amount of flexural anisotropy, but the frequency parameter converges
to the correct solution, provided the number of functions is sufficiently
high. In this case, the bending response is uncoupled from the mem-
brane one, thus the inability to represent a constant strain has no strong
impact on the results. On the contrary, the Navier-type functions lead to
erroneous results when a h/ is reduced to 5. Indeed, the behavior of
thick plates is inherently three-dimensional, and the coupling between
in-plane and out-of-plane deflections happens by means of the con-
stitutive 3D law. It follows that the bending deflections promote the in-
plane displacements, whose description is lacking of the presence of a
linear term. It is also observed that extended trigonometric functions
converge much faster than in the case of thick plates. As pointed out
previously, the issues related to the flexural anisotropy become less
relevant for thick plates, as the through-the-thickness behavior gets
more pronounced.

3.4. Remarks on the numerical efficiency of different basis

In previous examples, results associated with the generic wording
orthogonal polynomials were computed by adopting Legendre poly-
nomials as admissible functions. It was anticipated that identical values
would have been obtained if Chebyshev polynomials were employed.
An explicit comparison between the two polynomial sets is here pro-
vided for the four lay-ups L1 to L4 considered in Section 3.1.1.

Table 7 shows the first nondimensional frequency when the lami-
nates have two sets of boundary conditions, fully simply-supported and
fully clamped, and two different thickness ratios, =a h/ 10 and

=a h/ 100. Thin plates are modeled according to FSDT, whereas the
higher order theory ED332 is adopted to better represent the moderately
thick configurations. A number of 30 × 30 polynomial functions is used
in all the cases. As seen, all the values in Table 7 are identical. This
outcome is in agreement with the findings of Ref. [14], where different
sets of polynomial expressions were compared and demonstrated to
lead to equal results, and it can be explained by recalling that the
method of Ritz operates a projection of the exact solution onto the
vector space spanned by the trial functions. In this case, the vector
space spanned by Legendre and Chebyshev polynomials is the same,
thus the solution is approximated with the same level of accuracy.
Slight differences may occur if the in-plane integrals are computed
numerically, as it is done in most of the implementations available in
the literature. On the contrary, no differences can be appreciated
whenever integration is performed exactly.

Despite the same degree of accuracy offered by the two set of
functions, the computational efficiency is, in general, very different. In
particular, noticeable differences regard the degree of sparsity of the
resulting matrices, which, in turn, affects the time for computing the
solution.

As an example, the percent number of nonzero terms in the stiffness

Fig. 7. Convergence of the solution for different sets of shape functions using ED332
theory. First fundamental frequency ω1 of SSSS plate, with lay-up [±45].

Fig. 8. Convergence of the solution for different sets of shape functions using ED332
theory. First fundamental frequency ω1 of SSSS plate, with lay-up [45].

Table 7
First nondimensional frequencies ω1 using different sets of orthogonal polynomials.

a/h= 10, ED332 a/h=100, FSDT

Legendre Chebyshev Legendre Chebyshev

SSSS Layup L1 18.1320 18.1320 22.0812 22.0812
Layup L2 13.4136 13.4136 14.4961 14.4961
Layup L3 19.0494 19.0494 23.8015 23.8015
Layup L4 15.1286 15.1286 17.2967 17.2967

CCCC Layup L1 24.2226 24.2226 40.3987 40.3987
Layup L2 23.7414 23.7414 30.8179 30.8179
Layup L3 22.8171 22.8171 29.9020 29.9020
Layup L4 23.1717 23.1717 31.3885 31.3885



matrix of the models based on ED332 is shown in Table 8. For the sake of
completeness, in addition to Chebyshev and Legendre polynomials, the
analysis now includes the models obtained using extended trigono-
metric functions. For the first two sets of functions, the results in the
brackets illustrate the case where the integration is carried out nu-
merically by employing Gauss quadrature with R points along both
directions. Instead, trigonometric functions are always integrated ana-
lytically due to the simplicity of the related expressions. As seen from
Table 8, whenever integration is carried out analytically, Legendre
polynomials are always associated with a higher degree of sparsity than
Chebyshev ones. The difference is remarkable and so the impact on the
computational cost. At the same time, the advantages of performing
analytical integration of the in-plane integrals can be appreciated.
Numerical integration determines the loss of any sort of sparsity – in
some cases the stiffness matrix is completely full –, and no significant
differences can be observed between different sets of orthogonal poly-
nomials. Trigonometric functions, whose adoption is restricted to the

simply-supported case, are generally less advantageous than Legendre
polynomials. At the same time, the degree of sparsity is higher than for
Chebyshev polynomials, although convergence is generally slower. In
the case of layup L2, which is a cross-ply configuration, the orthogon-
ality of sines and cosines is fully exploited, and the stiffness matrix is
almost diagonal. This is a special case and, in the presence of any ad-
ditional elastic coupling, the degree of sparsity offered by trigonometric
functions is lost. This situation is further illustrated in Fig. 9, where the
sparsity pattern of the stiffness matrix is reported for different functions
and lay-ups, after performing integration in closed-form manner. As
seen, the number of nonnull contributions is higher when the principal
axis are aligned with off-axis directions, as it happens for the lay-up
[45]. This observation holds independently of the kind of functions
adopted. At the same time, the highest degree of sparsity offered by
Legendre polynomials can be clearly appreciated.

Given the efficiency of the proposed implementation, it is inter-
esting to provide an insight into the computational time required by
typical calculations. A comparison is presented against the results of
Moreno-Garcia et al. [23], where computational times are reported for
different sets of shape functions. A fully clamped isotropic plate is taken
as a benchmark; dimensions and material properties are those of Ref.
[23]. The time needed to extract the first ten frequencies is reported in
Fig. 10(a) using a CPU with 32 GB of RAM, and 4 Intel core i7 and at
4 GHz. The efficiency of the present Ritz approach can be observed by
the maximum time taken for an analysis using 100 shape functions
along both the directions, approximately equal to 0.75 s. Conversely,
the results reported in Ref. [23] using modified characteristic functions
(MCF) and orthogonal polynomials (OP) require computational times
which are several order of magnitudes higher. This discrepancy, partly
due to the smaller amount of RAM memory used in the computations of
Ref. [23], is believed to be mainly motivated by the analytical

Legendre Chebyshev Extended trig.

SSSS Layup L1 5.08 (83.47a) 39.22 (83.47a) 20.15
Layup L2 2.54 (93.26a) 23.41 (96.13a) 0.19
Layup L3 4.72 (99.03a) 37.57 (99.99a) 18.39
Layup L4 5.91 (100.00a) 47.35 (100.00a) 24.50

CCCC Layup L1 2.98 (83.47a) 39.88 (83.47a) /
Layup L2 1.83 (96.64a) 24.17 (96.69a) /
Layup L3 2.86 (99.99a) 38.22 (100.00a) /
Layup L4 3.60 (100.00a) 48.14 (100.00a) /

Fig. 9. Sparsity pattern of the stiffness matrix using ED332 theory and 10× 10 functions: (a) lay-up [45], Legendre polynomials, (b) lay-up [45], Chebyshev polynomials, (c) lay-up [45],
extended trigonometric functions, (d) lay-up [0/90], Legendre polynomials, (e) lay-up [0/90], Chebyshev polynomials, (f) lay-up [0/90], extended trigonometric functions.

.

Table 8
Percent number of not-null terms in the stiffness matrix using analytical and numerical 
integration; ED332 theory, 30 × 30 functions. (a using numerical integration).



integration here performed, and the subsequent advantages in terms of
sparsity. At the same time, the results demonstrate the advantages of
Legendre polynomials against Chebyshev ones. The same consideration
holds in the case of higher-order theories, as reported in Fig. 10(b),
where FSDT and ED554 theory are applied to the same test case. It can be
noted that, using 100 Legendre functions along both directions, FSDT
results are available in 3 s, while ED554 in 109 s. On the contrary, the
time needed by Chebyshev polynomials is several orders of magnitudes
higher.

Worth of mention is the fact that no numerical instabilities are en-
countered as the number of functions is increased. This was verified up
to 100 functions in Fig. 10, and even to 250 functions in Table 5. This is
in contrast with some results in the literature where the onset of
complex eigenvalues is claimed, see for instance Ref. [23], or ill-con-
ditioning restrictions are detected [29].

4. Conclusions

This work has discussed aspects related to the application of the Ritz
method to buckling and free vibration analysis of highly anisotropic
thin and thick plates. An implementation of the method is specifically
developed with the aim of obtaining high computational efficiency. In
so doing, problems with high degree of anisotropy, for which the
convergence of the solution is particularly hard to achieve, can be
analyzed using a large number of trial functions, leading to an un-
precedented level of accuracy.

A set of exemplary results has been first presented for thin plates,
showing that the most detrimental effects on the convergence of the
solution are due to flexural anisotropy. This is particularly true in the
presence of natural boundary conditions, such as simply-supported and
free edges. Novel refined upper-bound solutions are provided for the
most challenging cases, using up to 250 admissible functions along each
in-plane direction. It is worth noting that no ill-conditioning issues nor
numerical instabilities have been detected.

In the case of thick plates, the effects of flexural anisotropy are
mitigated by the increasing role played by the through-the-thickness
response. As the width-to-thickness ratio decreases, it has been shown
that the accuracy of the solution is driven by the enrichment of the
kinematic description more than the increase in the number of trial
functions. Therefore, a variable-kinematic formulation capable of re-
presenting plate theories of increasing refinement within an unified
modeling framework can be particularly convenient to preliminarily
perform a tuning of the model to be used in the analysis.

An extensive comparison among different sets of admissible

functions has been also presented. Overall, the results indicate the su-
periority of orthogonal polynomials with respect to trigonometric
functions. This is true for all the cases, apart from those for which an
exact Navier-type solution is available.

The advantages of adopting orthogonal polynomials are more re-
levant for thin plates, especially in the presence of strong flexural an-
isotropy. However, their use is suggested also for thick plates if accurate
solutions are sought. Among the class of orthogonal polynomials, it was
shown that identical results are obtained if Legendre and Chebyshev
polynomials are adopted. In spite of that, a drastic difference exists in
terms of computational efficiency as far as Legendre polynomials are
responsible for a higher degree of sparsity. This feature is properly
exploited only if in-plane integration is carried out analytically.
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