. Abaqus, 24) 24.7957 (1.83)

. Abaqus, (3.64) 14.6661 (1.62) 14, vol.6294

. Abaqus,

. Abaqus, 68) 22.5929 (2.11) 22.2454 (0.54)

. Abaqus,

. Abaqus,

, Percent difference between the first frequency ? 1 obtained with Legendre and extended trigonometric functions (R = S=30)

W. Ritz, Theorie der transversalschwingungen einer quadratische platte mit freien randern, Ann Phys-Leipzig, vol.333, issue.4, pp.737-86, 1909.

D. A. Simons and A. W. Leissa, Vibrations of rectangular cantilever plates subjected to inplane acceleration loads, J Sound Vib, vol.17, issue.3, pp.407-429, 1971.

S. F. Bassily and S. M. Dickinson, Buckling and lateral vibration of rectangular plates subject to inplane loads-a Ritz approach, J Sound Vib, vol.24, issue.2, pp.219-258, 1972.

A. W. Leissa, The free vibration of rectangular plate, J Sound Vib, vol.31, issue.3, pp.257-93, 1973.

S. F. Bassily and S. M. Dickinson, On the use of beam functions for problems of plates involving free edges, J Appl Mech, vol.42, issue.4, pp.858-64, 1975.

R. B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, J Sound Vib, vol.102, issue.4, pp.493-502, 1985.

S. M. Dickinson and E. Li, On the use of simply supported plate functions in the Rayleigh-Ritz method applied to the flexural vibration of rectangular plates, J Sound Vib, vol.80, issue.2, pp.292-299, 1982.

P. Cupial, Calculation of the natural frequencies of composite plates by the RayleighRitz method with orthogonal polynomials, J Sound Vib, vol.201, issue.3, pp.385-392, 1997.

S. Smith, M. A. Bradford, and D. J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method, Int J Numer Meth Eng, vol.44, issue.11, pp.1685-707, 1999.

K. M. Liew, K. Y. Lam, and S. T. Chow, Free vibration analysis of rectangular plates using orthogonal plate function, Comput Struct, vol.34, issue.1, pp.79-85, 1990.

B. Baharlou and A. W. Leissa, Vibration and buckling of generally laminated composite plates with arbitrary edge conditions, Int J Mech Sci, vol.29, issue.8, pp.545-55, 1987.

K. M. Liew and C. M. Wang, pb-2 Rayleigh-Ritz method for general plate analysis, Eng Struct, vol.15, issue.1, pp.55-60, 1993.

M. M. Saadatpour, M. Azhari, and M. A. Bradford, Analysis of general quadrilateral orthotropic thick plates with arbitrary boundary conditions by the Rayleigh-Ritz method, Int J Numer Meth Eng, vol.54, issue.7, pp.1087-102, 2002.

R. E. Brown and M. A. Stone, On the use of polynomial series with the Rayleigh-Ritz method, Compos Struct, vol.39, issue.3-4, pp.191-197, 1997.

G. M. Oosterhout, P. Hoogt, and R. Spiering, Accurate calculation methods for natural frequencies of plates with special attention to the higher modes, J Sound Vib, vol.183, issue.1, pp.33-47, 1995.

S. G. Mikhlin, The Numerical Performance of Variational Methods. The Netherlands: Wolters-Noordhoff Publishing Groningen, 1971.

B. Budiansky and P. C. Hu, The Lagrangian multiplier method of finding upper and lower limits to critical stresses of clamped plates, Report, vol.848, 1946.

. Fig, Computational time against number of shape functions R × R: (a) CLT and comparison with Ref, vol.10

Y. Narita and A. W. Leissa, Buckling studies for simply supported symmetrically laminated rectangular plates, Int J Mech Sci, vol.32, issue.11, pp.909-933, 1990.

R. Vescovini and C. Bisagni, Single-mode solution for post-buckling analysis of composite panels with elastic restraints loaded in compression, Compos Part B: Eng, vol.43, issue.3, pp.1258-74, 2012.

R. Vescovini and C. Bisagni, Two-step procedure for fast post-buckling analysis of composite stiffened panels, Comput Struct, vol.128, pp.38-47, 2013.

O. Beslin and J. Nicolas, A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions, J Sound Vib, vol.202, pp.633-55, 1997.

L. Dozio, On the use of the trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates, Thin-Walled Struct, vol.49, pp.129-173, 2011.

P. Moreno-gar?a, A. Santos, J. V. Lopes, and H. , A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates, Arch Computat Methods Eng, vol.2017, pp.1-31

M. A. Stone and H. D. Chandler, Errors in double sine series solutions for simply supported symmetrically laminated plates, Int J Mech Sci, vol.38, issue.5, pp.517-543, 1996.

W. X. Yuan and D. J. Dawe, Overall and local buckling of sandwich plates with laminated faceplates, Part II: Applications. Comput Methods Appl Mech Eng, vol.190, issue.40, pp.5215-5246, 2001.

K. M. Rao, Buckling analysis of anisotropic sandwich plates faced with fiber-reinforced plastics, AIAA J, vol.23, issue.8, pp.1247-53, 1985.

C. G. Kim and C. S. Hong, Buckling of unbalanced anisotropic sandwich plates with finite bonding stiffness, AIAA J, vol.26, issue.8, pp.982-990, 1988.

A. Gawandi, J. M. Whitney, and R. A. Brockman, Natural boundary conditions in the bending of anisotropic laminated plates, Compos Struct, vol.82, issue.2, pp.201-209, 2008.

Z. Wu, G. Raju, and P. M. Weaver, Comparison of variational, differential quadrature, and approximate closed-form solution methods for buckling of highly flexurally anisotropic laminates, J Eng Mech, vol.139, issue.8, pp.1073-83, 2012.

E. Carrera, F. A. Fazzolari, and L. Demasi, Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method, J Vib Acoust, vol.133, issue.6, pp.61017-61018, 2011.

F. A. Fazzolari and E. Carrera, Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates, Compos Struct, vol.94, issue.1, pp.50-67, 2011.

F. A. Fazzolari and E. Carrera, Thermo-mechanical buckling analysis of anisotropic multilayered composite and sandwich plates by using refined variable-kinematics theories, J Therm Stresses, vol.36, issue.4, pp.321-50, 2013.

F. Fazzolari and E. Carrera, Accurate free vibration analysis of thermo-mechanically pre/ post-buckled anisotropic multilayered plates based on a refined hierarchical trigonometric Ritz formulation, Compos Struct, vol.95, pp.381-402, 2013.

L. Fiedler, W. Lacarbonara, and F. Vestroni, A generalized higher-order theory for multilayered, shear-deformable composite plates, Acta Mech, vol.209, pp.85-98, 2010.

L. Dozio and E. Carrera, A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness, J Sound Vib, vol.330, issue.18, pp.4611-4643, 2011.

L. Dozio and E. Carrera, Ritz analysis of vibrating rectangular and skew multilayered plates based on advanced variable-kinematic models, Compos Struct, vol.94, issue.6, pp.2118-2146, 2012.

R. Vescovini and L. Dozio, A variable-kinematic model for variable stiffness plates: vibration and buckling analysis, Compos Struct, vol.142, pp.15-26, 2016.

D. 'ottavio, M. Dozio, L. Vescovini, R. Polit, and O. , Bending analysis of composite laminated and sandwich structures using sublaminate variable-kinematic Ritz models, Compos Struct, vol.155, pp.45-62, 2016.

R. Vescovini, D. 'ottavio, M. Dozio, L. Polit, and O. , Thermal buckling response of laminated and sandwich plates using refined 2-d models, Compos Struct, vol.176, pp.313-341, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01981940

R. L. Woodcock, Free vibration of advanced anisotropic multilayered composites with arbitrary boundary conditions, J Sound Vib, vol.312, issue.4, pp.769-88, 2008.

L. Dozio, Refined 2-D theories for free vibration analysis of annular plates: unified Ritz formulation and numerical assessment, Comput Struct, vol.147, pp.250-258, 2015.

L. Demasi, ? 3 hierarchy plate theories for thick and thin composite plates: the Generalized Unified Formulation, Compos Struct, vol.84, issue.3, pp.256-70, 2008.

L. Demasi, ? 6 mixed plate theories based on the Generalized Unified Formulation. Part I: governing equations, Compos Struct, vol.87, issue.1, pp.1-1, 2009.

E. Carrera, A class of two-dimensional theories for anisotropic multilayered plates analysis. Atti Accademia delle Scienze di Torino, Memorie Scienze Fisiche, vol.19, pp.1-39, 1995.

E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch Comput Methods Eng, vol.9, issue.2, pp.87-140, 2002.

E. Carrera and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos Struct, vol.69, issue.3, pp.271-93, 2005.

L. E. Monterrubio and S. Ilanko, Proof of convergence for a set of admissible functions for the Rayleigh-Ritz analysis of beams and plates and shells of rectangular planform

, Comput Struct, vol.147, pp.236-279, 2015.

J. Storch and G. Strang, Paradox lost: natural boundary conditions in the Ritz-Galerkin method, Int J Numer Methods Eng, vol.26, issue.10, pp.2255-66, 1988.

A. E. Green, Double Fourier series and boundary value problems, Math Proc Cambridge Philos Soc, vol.40, issue.3, pp.222-230, 1944.

J. M. Whitney and A. W. Leissa, Analysis of a simply supported laminated anisotropic rectangular plate, AIAA J, vol.8, pp.28-33, 1970.

J. M. Whitney, Air Force Materials Laboratory Wright-Patterson Air Force Base, 1972.

K. Malekzadeh, M. R. Khalili, A. Jafari, and R. K. Mittal, Dynamic response of in-plane prestressed sandwich panels with a viscoelastic flexible core and different boundary conditions, J Compos Mater, vol.40, issue.16, pp.1449-69, 2006.

N. Fantuzzi, F. Tornabene, M. Bacciocchi, A. Neves, and A. Ferreira, Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates, Int J Numer Meth Eng, vol.111, pp.354-82, 2017.

P. M. Weaver, Approximate analysis for buckling of compression loaded long rectangular plates with flexural/twist anisotropy, Proc R Soc London A: Math Phys Eng Sci, vol.462, pp.59-73, 2006.

W. Lanhe, L. Hua, and W. Daobin, Vibration analysis of generally laminated composite plates by the moving least squares differential quadrature method, Compos Struct, vol.68, issue.3, pp.319-349, 2005.

Q. Zhu and X. Wang, Free vibration analysis of thin isotropic and anisotropic rectangular plates by the discrete singular convolution algorithm, Int J Numer Meth Eng, vol.86, issue.6, pp.782-800, 2011.

X. Wang, Y. Wang, and S. Xu, DSC analysis of a simply supported anisotropic rectangular plate, Compos Struct, vol.94, issue.8, pp.2576-84, 2012.

M. W. Hyer, Stress analysis of fiber-reinforced composite materials, 1998.

R. M. Jones, Mechanics of composite materials, 1998.

J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2004.

J. Wang, On the solution of plates of composite materials, J Compos Mater, vol.3, issue.3, pp.590-592, 1969.

, Abaqus, version 6.16. User's manual, SIMULIA World Headquarters, 2016.