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Abstract

Extract knowledge and significant information from very large data sets is a main topic in Data Science, bringing the interest of
researchers in machine learning field. Several machine learning techniques have proven effective to deal with massive data like Deep
Neuronal Networks. Evolutionary algorithms are considered not well suitable for such problems because of their relatively high
computational cost. This work is an attempt to prove that, with some extensions, evolutionary algorithms could be an interesting
solution to learn from very large data sets. We propose the use of the Cartesian Genetic Programming (CGP) as meta-heuristic
approach to learn from the Higgs big data set. CGP is extended with an active sampling technique in order to help the algorithm
to deal with the mass of the provided data. The proposed method is able to take up the challenge of dealing with the complete
benchmark data set of 11 million events and produces satisfactory preliminary results.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of KES International.
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1. Introduction

The scientific and technical challenges that have arisen with the beginning of the era of the Big Data are identified
and recognized by the scientific communities. These challenges include learning from very large data sets. In fact,
learning from very large datasets may limit the applicability of most of the usual techniques. Currently, there is a
great quantity of very large public datasets; for example, the Machine Learning Repository contains more than 400
datasets classified by kind of task, attribute type, data type, etc'. In 2014, a small group of ATLAS physicists and data
scientists have organized a machine learning challenge allowing to analyze the Higgs dataset, a recent high energy
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experimental physic database[1] . The main tools of high energy experimental physicists are modern accelerators to
collide protons and/or antiprotons to create exotic particles that occur only at extremely high energy densities. Here,
the problem is that particle accelerators create a huge amount of data, however the vast majority of particle collisions
do not produce exotic particles. For example, though the Large Hadron Collider produces approximately 100 billion
collisions per hour, approximately 300 of these collisions result in a Higgs boson, on average [6]. So, a good data
analysis depends on distinguishing collisions which produce particles of interest (signal) from those producing other
particles (background). A description of the Higgs dataset is given in section 2. Several machine learning techniques
were proposed such as Deep Neural Networks [1] and decision trees [9]. Gbor Melis, the winner of the Higgs Boson
challenge, states that "his original plan for this contest was to use an evolutionary algorithm, but he withdrew because
evolutionary algorithms do not scale to larger problem sizes”. Nevertheless, Genetic Programming (GP) evolutionary
techniques have shown to be a very promising solution to deal with the large data classification scenario. However,
this algorithm suffers from an increased computational cost induced mainly by the evaluation step.

There have been some research efforts to improve the performance of GP when applied to very large data sets. A
promising algorithmic solution is to reduce the learning set size by adding an active data sampling technique[15]. The
specific interest of the active data sampling lies in reducing the original training dataset size by substituting it with a
representative subset much smaller.

This paper intends to show that GP is a good solution for such kind of data. We propose an active sampling method
to learn from the Higgs dataset using a Cartesian Genetic Programming (CGP). In addition, the dataset used for the
challenge is a sub-sample of the original database. The challenge training set contains only 250K instances. In this
work, we propose to use a CGP to learn from the enlarged big dataset proposed by Baldi [6] containing 11 million
events. To deal with the high size of the training data, CGP is extended with an active sampling technique.

After giving further details about the Higgs dataset and some related works, we present in section 3 a short review
of the active sampling techniques proposed for evolutionary methods. The proposed evolutionary machine learning
technique based on an active sampling is presented in details in section 4. Sections 5 and 6 summarize the experimental
setting and give some preliminary results. The last section concludes the present work and presents some further works
to improve our algorithm.

2. Higgs dataset and related works

A Higgs or Z boson is a heavy state of matter resulting from a small fraction of the proton collisions at the Large
Hadron Collider[7]. This heavy state quickly decays into more stable particles, so the intermediate states of matter
are not observable by the detectors surrounding the point of collision. Thus, it is difficult to distinguish between two
different processes with the same set of final stable particles without studying the intermediate states. An other ap-
proach is to examine closely the momentum and direction of the final state particles. Highly faithful collisions are
then simulated by the ATLAS Simulator [10] using sophisticated Monte Carlo programs to reproduce the essential
measurements provided by the detectors. The relevant variables are known as low-level variables. Otherwise, in order
to better discriminate between Higgs-boson productions and Z-boson productions, a set of high-level variables is con-
structed using non-linear combinations of the low-level variables. The resulting dataset contains 80 million collision
events, characterized by 28 real-valued features, 21 low-level variables describing the 3D momenta and energies of
the collision products, and 7 high-level variables.

ATLAS experiment at CERN publicly released a portion of the simulated data used by physicists to optimize the
analysis of the Higgs Bosons by machine learning techniques. A subset of this data was presented as a challenge
in 2014 [1] in the kaggle platform®. The immediate goal of the challenge was to explore the potential of advanced
classification methods to improve the statistical significance of the experiment. The supervised learning task is to
distinguish between two types of physical processes: one in which a Higgs Boson decays into 7*7 leptons and a
background process that produces a similar measurement distribution [6].

2 https://www.kaggle.com/
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From the machine learning point of view, the problem can be formally cast into a binary classification problem. The
task is to classify events as a signal (event of interest) or a background (event produced by already known processes).

For the challenge, Kaggle provided a training set of 250K events and a test set of 550K events (a detailed description
is given in [2]). Most of the advanced machines learning techniques were tried for this challenge. For example most top
ranking solutions used ensembles of decision trees, and particularly the XGBoost software [4]. The winning solution
of Gbor Melis[20] uses a deep learning method (an ensemble of 70 3-layers Neural Networks fully interconnected,
with 600 hidden units per layer).

Just after the challenge, Baldi et al. [6] published for benchmarking machine-learning classification algorithms a big
data set of simulated Higgs Bosons that contains 11 million simulated collision events and the 28 features presented
above *. The instances in the positive class correspond to signal events, otherwise, they correspond to background
event. Some recent works tried to learn a portion of this new benchmark dataset. For example, Alves [5] used an
ensemble learning with various machine learning algorithms to learn form just 20% of the 11 million events. The
work of Baldi [6] using the Deep Neural Network (DNN) on the same proportion of data have been used as reference
to judge the performance of his method and concluded that the proposed algorithm performed only about 10% worse
than the complex DNNS.

In this work, we propose to handle the complete dataset with 11 million instances, which is a big challenge when
using evolutionary algorithms. The following table summarizes the main characteristics of the dataset:

Table 1: Higgs dataset composition

Total of events 11 millions

Number of Attributes | 28 real-valued (21 low-level variables and 7 high-level variables)
Percentage of signals | 53%

Training set size 10.5 millions events

Test set size 500K events

3. Active Sampling

Active learning is a subfield of machine learning where the learner (algorithm) could choose the data from which
it learns. This hypothesis was developed essentially in the statistics literature. Active sampling could be considered as
the main approach for active learning.

There have been a lot of algorithms and applications for active sampling in machine learning over the years [24].
Some of these techniques are specific to evolutionary algorithms and could be classified into two categories: one
level sampling techniques and multi-level sampling techniques or hierarchical sampling. We present below the main
methods in each category.

3.1. One level sampling methods

3.1.1. Random Sampling

The simplest method to choose fitness cases to build the training sample is random. The selection of fitness cases
is based on a uniform probability among the training subset. This stochastic selection helps to reduce any bias within
the full dataset on evolution. Random Subset Selection (RSS) is the first implementation given by Gathercole et al.
[13]. In RSS, at each generation g, the probability of selecting any case i is equal to P;(g) such that :

S
Vi:1<i<T, P,»(g)z;. (1)

3 See UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/HIGGS
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where T is the size of the full dataset and S is the target subset size (for all the following equations). The sampled
subset has a fluctuating size around S. A second variant of random sampling called Fixed Random Selection [27]
uses a fixed number of cases selected at every generation. The Stochastic Sampling [22] is a third variant of random
sampling using the same probabilistic selection to construct subsets, but for each individual per generation. The single
parameter of this technique is the subset size and it is set like an additional GP parameters.

3.1.2. Weighted Sampling

Weighted Sampling techniques have two objectives:
(1) focus the algorithm abilities on difficult cases, i.e. fitness cases frequently unsolved by the best solutions,
(ii) check fitness cases that have not been looked at for several generations.
They are highly inspired by boosting techniques in the machine learning field, originally used to improve accuracy of
weak learners.
The first algorithm in this category is Dynamic Subset Selection (DSS) [13, 14, 12]. This algorithm is intended to
preserve training set consistency while alleviating its size by keeping only the difficult cases with ones not selected
for several generations. To each dataset record is assigned a difficulty degree D;(g) and an age A;(g) starting with 0 at
first generation and updated at every generation. The difficulty is incremented for each misclassification and reset to
0 if the fitness case is solved. The age is equal to the number of generations since last selection, so it is incremented
when the fitness case has not been selected and reset to 0 otherwise.
The resulting weight W of the i” fitness case is calculated as follows:

Vi:1<i<T, Wig)=Dig)+Ag) @)

where d is the difficulty exponent and a is the age exponent. The selection probability of a record i is biased by its
weight W; such that:

Pi(g) xS

Viil<i<T, Pg)=—b""
lewj(g)

3)
DSS needs three parameters to be tuned: difficulty exponent, age exponent and target size.

3.1.3. Incremental Data Selection: (IDS)

The Incremental Data Selection, called by the authors Incremental Data Inheritance [27], associates a training
subset to each individual. During evolution, the individual subsets are recombined and enlarged by small numbers of
fitness cases taken from the original data set. This procedure should ensure diversity of the training data. In the final
generation, all individuals are evaluated according to the entire dataset.

3.1.4. Topology Based Subset Selection (TBS)

The Topology Based Subset Selection technique extends the DSS method to take into account the topology of the
fitness space, creating relationships between fitness cases [18]. The relation between two fitness cases is strengthened
if a single individual of the population is able to solve both fitness cases. Then, cases having a tight relationship with
respect to a threshold cannot be selected together in the same subset assuming that they have an equivalent difficulty
for the population.

3.1.5. Balanced sampling

Balanced sampling[17] aims to improve classifier accuracy by correcting the original dataset imbalance within
majority and minority class instances. It has some methods based on the minority class size and thus reduce the
number of instances like the methods studied in this paper. Several approaches are proposed, we summarize hereafter
three sampling techniques used with GP. First, Static Balanced Sampling that selects cases with uniform probability
from each class without replacement until obtaining a balanced subset of the desired size. Then, Basic Under-sampling
(resp. Basic Over-sampling) selects all minority (resp. majority) class instances and then an equal number from the
majority (resp. majority) class randomly.
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Fig. 1: Two level Hierarchical sampling

3.2. Multi-level sampling or Hierarchical Sampling

Hierarchical sampling combines several sampling algorithms applied at different levels. Its objective is to deal with
large data sets that do not fit in the memory, and simultaneously provide the opportunity to find solutions with a greater
generalization ability than those given by the one-level sampling techniques. The data subset selections at each level
are independent.

3.2.1. RSS-DSS and DSS-DSS

Curry et al. conceived an extension to the DSS algorithm into a 3 levels hierarchy[23]. At level 0, the data set
is first partitioned into blocks that are sufficiently small to reside within RAM alone. Then, at level 1, one block is
chosen from this partition based on RSS or DSS. Finally, at level 2, the selected block is considered as the full dataset
on which DSS was applied for several generations. Depending on the level 1 algorithm, two approaches are possible:
RSS-DSS hierarchy or DSS-DSS hierarchy.

3.2.2. Balanced Block-DSS

Curry et al. proposed an extension of their method RSS-DSS/DSS-DSS and they introduce the Balanced Block
DSS (BB-DSS) [11]. BB-DSS differs from the precedent methods on the level 0, where database partition is altered
in order to obtain balanced blocks at level 1. To generate a balanced block that reflect the original data set classes’
distribution, the method uses a fixed ratio for each class.

3.2.3. RSS-TBS

Based on the same idea, Hmida et al. proposed two new variants of hierarchical sampling : the RSS-TBS and the
BUSS-RSS-TBS [15]. The RSS-TBS uses the Topology Based Subset Selection at level 2 instead of RSS or DSS. The
second variant BUSS-RSS-TBS extends the first variant with a Basic Under-sampling at the level O block creation.
BUSS favors the minority class by calculating the block size according to their cardinalities. For majority class, an
equal number of instances are selected randomly.

4. Extending CGP with Active Sampling

As an evolutionary machine learning technique, we choose the Cartesian Genetic Programming (CGP) that is a
graph-based GP. CGP is extended with a an active data sampling technique from one-level and two-level sampling
categories. Details are given in the following two subsections.

4.1. Cartesian Genetic Programming

Cartesian Genetic Programming [21] is an extension of the standard GP where genotypes represent graph-like
programs. The genotype is a list of integers that represents the program primitives and how they are connected together.
Each integer encodes some information such as: from where a node gets its data, what operations the node performs
on the data and where is the output data required by the user.
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CGP shows several advantages over other GP approaches. Unlike trees, there are more than one path between
any pair of nodes. This enables the reuse of intermediate results. A genotype can also have multiple outputs which
make CGP able to solve many types of problems. Otherwise, CGP has the great advantage of counteracting the bloat-
ing effect (genotype growth), frequent phenomena with other GP representations. Note that bloating is undesirable,
especially with very large datasets. CGP is easy to implement, and it is highly competitive compared to other GP
methods.

The main operator implemented for CGP is the point mutation that chooses randomly an allele g,, and changes
it according to its nature. If g, corresponds to a function label, then it is replaced by a random element from the
non-terminal set (Table 2). Otherwise, a random value is chosen from the output of any previous node in the genotype
or from the terminal set. CGP uses also an arithmetic crossover for real-valued genomes.

[26].

4.2. The data sampling approach

To compare the efficiency of the data sampling approaches when applied to Higgs dataset, one technique is selected
from each category: the RSS from the one-level sampling category and the RSS-DSS from the two-level sampling
category. The RSS technique is implemented as described in section 3.1.1 where a random training subset is selected
at each generation. The RSS-DSS sampling process is applied through three levels. First, the entire training data set
is partitioned into equal blocks that are small enough to fit within RAM (level 0). The number of cases per class
is proportional to the initial training set class distribution. Blocks are then saved into hard disk. In the next step,
blocks are chosen randomly with uniform probability using RSS technique. This forms level 1. At level 2, DSS
algorithm is used to sub-sample the selected block biased by exemplar difficulty and age as described for the DSS
method (section 3.1.2). The general algorithm is shown below.

Algorithm 1: CGP + RSS-DSS active sampling
Parameters:
S: learning data set
Tj: for level 1 maximum iterations
Tp: for level 2 maximum iterations

Divide S into blocks ; // level O
repeat
Conduct Block Selection using RSS method ; // level 1
reset age and difficulty vectors (A(g) and D(g))
repeat
Conduct Subset Selection using DSS ; // level 2

Evaluate individuals against block subset

Update fitness case ages A;(g)

Update fitness case difficulty D;(g)

Evaluate best of generation individual against full block
Update best of run according to full block performance
Apply genetic operators

until level 2 iterations = Tp;

until level 1 iterations = Tjy;

In addition to the known CGP parameters, two new parameters are used by the algorithm: Ty and Tp. T and T
design respectively the number of CGP iterations for the first-level sampling (RSS) and for the second-level sampling
(DSS).Thus, after each T iterations, the level-one training data set is replaced with an other set with the RSS method.
This set is used to generate the training dataset each T}, iterations with the DSS approach.
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4.3. Performance Metrics

By the end of each run, the best individual based on the fitness function is evaluated on the test dataset. Results
are recorded in a confusion matrix from which accuracy, True Positive Rate (TPR) and False Positive Rate (FPR) are
calculated. The objective function used with CGP is the classification accuracy according to the following formula.

True Positives + True Negatives

“)

Accuracy =
Total patterns
Otherwise, to evaluate performance of the predictive models, Kaggle uses an evaluation metric known as Ap-
proximate Median Significance (AMS). This metric uses FPR value (corresponding to the rate of events classified as
signals) and TPR value (corresponding to the rate of events classified as background), and aims to heavily penalize
false positive cases. A detailed description of AMS is available in [3]. several formula have been proposed to compute
AMS value. A simplified definition is given in [2] as follows:

TPR
AMS = where € < 0.1 ®))

\FPR + (FPR x €)?

In addition to these metrics, we calculate the Area Under ROC curve (AUC or AUROC) of the best classifier. AUC
is often used as a measure of quality of the classification models.

5. Experimental settings
5.1. Framework

Software framework. Among several evolutionary computation frameworks, Sean Luke’s ECJ [19] was used in this
work to implement and test the extended CGP. ECJ is an active project at George Mason University’s Evolutionary
Computation Laboratory having frequent releases It’s an open source framework written in Java and benefit of many
contribution packages as the one used here for implementing Cartesian GP developed by David Oranchak[8]. This
framework provides a very flexible API using parameter files well documented in the ECJ owner’s manual.

Hardware framework. Experiments are performed on an Intel i7 — 4810M Q (2.8GHZ) workstation with 8GB RAM
running under Windows 8.164 — bit Operating System. GP programs are trained to distinguish between signal events
and background events in the Higgs database.

5.2. Terminal and function sets

The terminal set includes 28 features of the benchmark Higgs dataset. The function set includes basic arithmetic,
comparison and logical operators reaching 17 functions (table 2).

Table 2: Terminal and function sets for GP.

Function (node) set

Arithmetic operators: +, —, % %
Comparison operators: <, >, <=, >=, =
Logic operators: AND, OR, NOT, NOR, NAND
Other: NEGATE, IF (IF THEN ELSE),

IFLEZE(IF <=0 THEN ELSE)
Terminal set
Higgs Features 28
Random Constants 8in [-2,2]
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5.3. CGP and sampling parameter settings

The design of CGP parameters used in this work is summarized in Table 3. The parameter values are tuned thanks
to a series of trials.

Table 3: CGP and sampling parameters.

(a) CGP parameters (b) Sampling Parameters
Parameter | Value | | Method \ Parameter | Value |
Population size 128 [ One level RSS | Target Size | 7000 |
Number of generations | 3500 Two level Target Size(level 2 block size) 7000
CGP nodes 500 RSS-DSS Level 0 block size 50000
CGP levels-back 3 RSS iterations 50
Inputs/Outputs 36/1 Max DSS iterations 70
Tournament size 4 Difficulty/Age exponent 1/3.5
Crossover probability | 0.9 Difficulty/Age Roulette 70%/30%
Mutation probability 0.04

Active sampling parameters are exposed in Table 3(b). The one-level sampling method (RSS) has a unique param-
eter which is the target subset size. It is set to the value of the two-level RSS-DSS target for comparability purposes.
RSS-DSS uses a large number of parameters having their values adjusted according to our previous works in [16]. For
this study, only three parameters are tuned: target size, RSS iterations and Max DSS iterations.

6. Results and discussion

For the experimental study, nine measures are recorded across the 5 runs performed: the best and the mean values
for the accuracy(4), TPR, FPR and AMS metric (5) whereas AUC is recorded only for the best classifier. To compute
AMS, € (eq. 5) is set to 0.05. The corresponding values are illustrated in Table 4.

Table 4: CGP results according to the performance metrics.

Accuracy TPR FPR AMS AUC
One level Sampling Best 0,637854 | 0,6803448 | 0,3139881 1,214 | 0,6405
RSS Average | 0,6293352 | 0,6620886 | 0,35647769 | 1,08
Two level sampling Best 0,65038 0,686341 0,39 1,1 0,6482
RSS-DSS Average | 0,6459072 | 0,6426552 | 0,3504401 | 1,0855

Besides the performance metrics, we also recorded the confusion matrix according to the test set. It shows the
distribution of fitness cases between the two classes (S: Signal, B: Background) as predicted by the best CGP classifier
against their real classes as marked on the test set.

Table 5: Confusion Matrices of the test set.

(a) One level RSS

(b) Two level RSS-DSS

Real class Real class
S B S B
Predicted | S | 157376 | 73942 Predicted | S | 181542 | 91845
class B | 107131 | 161551 class B | 82965 | 143648

The big challenge of this work is to prove that a Genetic Programming algorithm, with some extensions, is able to
learn from very large data sets. This goal is well achieved. Extended with an active sampling approach, CGP is able to
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train its population on a data set having 10.5 million observations in a reasonable time. Indeed, with the configuration
described in section 3, a complete run of CGP took around 2.5 hours, which could be considered as an interesting
runtime viewing the large scale of the problem and the hardware framework. Otherwise, the spent time for a single
CGP run is lower than for other machine learning techniques such as Logistic Regression or Linear SVM (table 6).
Moreover, the comparison between the results obtained with the two implemented active sampling techniques shows
that the performance of the two approaches are quite similar with a small superiority of the RSS-DSS method
(table 4). These results prove the validity of the active learning for Genetic Programming.

The most known results in Higgs Boson detection are those achieved in Kaggle Higgs challenge. Though, compar-
ing our result with this challenge ”leaderboard” is not fair for the following reasons:

Kaggle’s challenge uses a different dataset having a fewer number of events,

this dataset have 30 features, 13 of them are derived and selected by ATLAS physicists,

ranking is based on AMS score that depends on each event weight set by experts for this challenge,
performance enhancing measures are extensively used by competitors such as feature reduction, ensemble clas-
sifiers, bagging, parameter tuning, etc.

Note that the winning method is an ensemble of 70 neural networks whose predicted probabilities were combined
by simple arithmetic averaging [20]. The neural networks only differed in their initialization and training sets. Other
published works are based on the same data base of the present work, but they used a selected subset with a reduced
size for the experimental study.

The first machine learning technique applied on the Higgs data set is a Deep Neural Network (DNN) proposed by
Baldi et al.[7]. They compared this technique with the boosted decision tree and the Shallow Neural Network. They
used a subset of Higgs data base of 2.6 million examples and 100K validation examples. They demonstrated how
DNN can be trained on such data set with a high degree of accuracy.

In [25], authors evaluate machine learning frameworks on Higgs dataset in very close configuration to our work.
They run Logistic Regression and Linear SVM using Wekam, Scikit-Learn and Spark. Only Spark managed to run
algorithms on the data due to its big size. Our method outperforms their results in a shorter time as reported in Table 6.

Table 6: Results of Shashidhara and al.[25].

Classifier Training time | Accuracy
Logistic Regression 4 hours 0.6076
Linear SVM 5 hours 0.5290

The present work is the first GP based attempt to deal with Higgs dataset and is among few works that trains on
the complete dataset. The extended CGP takes up the challenge to deal with the complete benchmark data set of 11
million events thanks to the active sampling. Further extensions and improvements could be conducted especially on
the hierarchical sampling in many ways. For example, data preprocessing and feature engineering are a promising
directions to improve classifier quality. Tuning CGP intrinsic parameters, like fitness function, crossover and mutation
probabilities and much more settings ..., is a hard problem but remains another path to investigate.

7. Conclusion

We proposed in the present work the use of the Cartesian Genetic Programming to classify Bosons in the Higgs
benchmark dataset. To deal with the high size of the training data, CGP is extended with two active sampling ap-
proaches: one-level sampling technique where events in the generated subset are selected randomly, and hierarchical
sampling with three level data selection techniques. The second and the third levels use respectively a random and a
weighted data sampling.

CGP was able to yield satisfactory results. However, some improvements are needed to both raise the quality of
the performance metrics and reduce the computing time.
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First, other configurations of the proposed method will be tried. The objective is to better tune CGP and RSS-DSS
parameters (such as 7, and T, ) in order to improve accuracy. Otherwise, CGP will be tested with AMS as fitness
function rather than the accuracy metric. Finally, a second extension will be added to CGP to parallelize the CGP
evaluation step.
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