Détection de changement de sous-espace signal de matrices de covariance structurées

Abstract : Testing common properties between covariance matrices is a relevant problem in a plethora of signal processing applications. In this paper, we derive a new statistical test in the context of structured covariance matrices. Specifically, we consider low rank signal component plus white Gaussian noise structure. Our aim is to test the equality of the principal subspace, i.e., subspace spanned by the principal eigenvectors of a group of covariance matrices. A decision statistic is derived using the generalized likelihood ratio test. As the formulation of the proposed test implies a non-trivial optimization problem, we derive an appropriate majorization-minimization algorithm. Finally, numerical simulations illustrate the properties of the newly proposed detector compared to the state of the art.
Document type :
Conference papers
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal-univ-paris10.archives-ouvertes.fr/hal-02333902
Contributor : Administrateur Hal Nanterre <>
Submitted on : Friday, October 25, 2019 - 4:18:06 PM
Last modification on : Tuesday, November 19, 2019 - 1:50:54 AM

File

Détection de changement de so...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02333902, version 1

Collections

Citation

Abdallah R. Ben, A. Breloy, M. N. El Korso, David Lautru. Détection de changement de sous-espace signal de matrices de covariance structurées. Conference GRETSI - XXVIIème Colloque francophonede traitement du signal et des images, Sep 2019, Lille, France. ⟨hal-02333902⟩

Share

Metrics

Record views

16

Files downloads

9