R. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J Appl Mech ASME, vol.18, pp.31-39, 1951.

A. Ferreira, C. Roque, and J. R. , Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions, Comput Methods Appl Mech Eng, vol.194, pp.4265-78, 2005.

J. Reddy and N. Phan, Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory, J Sound Vib, vol.98, pp.157-70, 1985.

J. Reddy, A simple higher-order theory for laminated composite plates, J Appl Mech ASME, vol.51, issue.4, pp.745-52, 1984.

A. Bhimaraddi and L. Stevens, A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates, J Appl Mech ASME, vol.51, pp.195-203, 1984.

K. Soldatos and T. Timarci, A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories, Compos Struct, vol.25, issue.1-4, pp.165-71, 1993.

O. Polit and M. Touratier, High order triangular sandwich plate finite element for linear and nonlinear analyses, Comput Methods Appl Mech Eng, vol.185, pp.305-329, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01366943

J. Reddy, Mechanics of laminated composite plates and shells -theory and analysis, 2004.

P. Vidal and O. Polit, A family of sinus finite elements for the analysis of rectangular laminated beams, Compos Struct, vol.84, pp.56-72, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01366937

E. Carrera, On the use of the murakami's zig-zag function in the modeling of layered plates and shells, Comput Struct, vol.82, pp.541-54, 2004.

K. Lo, R. Christensen, and F. Wu, A higher-order theory of plate deformation. Part ii: Laminated plates, J Appl Mech ASME, vol.44, pp.669-76, 1977.

A. Tessler, E. Saether, and T. Tsui, Vibration of thick laminated composite plates, J Sound Vib, vol.179, pp.475-98, 1995.

S. Kapuria and J. Nath, On the accuracy of recent global-local theories for bending and vibration of laminated plates, Compos Struct, vol.95, pp.163-72, 2013.

J. Reddy, A generalisation of two-dimensional theories of laminated composite plates, Commun Appl Numer Methods, vol.3, pp.173-80, 1987.

D. Robbins and J. Reddy, Modeling of thick composites using a layerwise laminate theory, Int J Numer Meth Eng, vol.36, pp.655-77, 1993.

A. Ferreira, C. Roque, J. R. Kansa, and E. , Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations, Eng Anal Bound Elem, vol.29, pp.1104-1118, 2005.

G. Kulikov and S. Plotnikova, Exact 3d stress analysis of laminated composite plates by sampling surfaces method, Compos Struct, vol.94, pp.3654-63, 2012.

Y. Desai, G. Ramtekkar, and A. Shah, Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model, Compos Struct, vol.59, pp.237-286, 2003.

E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Appl Mech Rev, vol.10, issue.3, pp.215-96, 2003.

L. Demasi, ? 3 plate theories for thick and thin plates: the generalized unified formulation, Compos Struct, vol.84, pp.256-70, 2008.

L. Demasi, infty 6 mixed plate theories based on the generalized unified formulation. Part i: governing equations, Compos Struct, vol.87, issue.3, pp.1-11, 2009.

M. D'ottavio, A sublaminate generalized unified formulation for the analysis of composite structures, Comput Struct, vol.142, pp.187-99, 2016.

H. Murakami, Laminated composite plate theory with improved in-plane responses, J Appl Mech ASME, vol.53, pp.661-667, 1986.

P. Vidal and O. Polit, Vibration of multilayered beams using sinus finite elements with transverse normal stress, Compos Struct, vol.92, pp.1524-1558, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01366979

A. Tessler, M. D. Sciuva, and M. Gherlone, A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics, J Mech Mater Struct, vol.5, pp.341-67, 2010.

P. Cosentino, An enhanced single-layer variational formulation for the effect of transverse shear on laminated orthotropic plates, Eur J Mech A Solids, vol.29, issue.4, pp.567-90, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00559139

P. Vidal and O. Polit, A refined sinus plate finite element for laminated and sandwich structures under mechanical and thermomechanical loads, Comput Methods Appl Mech Eng, vol.253, pp.396-412, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01366914

E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl Mech Rev, vol.56, issue.3, pp.287-308, 2003.

A. Noor and W. Burton, Assessment of computational models for multilayered composite shells, Appl Mech Rev, vol.43, issue.4, pp.67-97, 1990.

Y. Zhang and C. Yang, Recent developments in finite elements analysis for laminated composite plates, Compos Struct, vol.88, pp.147-57, 2009.

E. Carrera and S. Brischetto, A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Appl Mech Rev, vol.62, 2009.

A. Sayyad and Y. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results, Compos Struct, vol.129, pp.177-201, 2015.

A. Kerr, An extension of the kantorovich method, Quart Appl Math, vol.26, pp.219-248, 1968.

A. Kerr, An extended kantorovich method for the solution of eigenvalue problems, Int J Solids Struct, vol.5, pp.559-72, 1969.

I. Shufrin and M. Eisenberger, Stability and vibration of shear deformable plates first order and higher order analyses, Int J Solids Struct, vol.42, pp.1225-51, 2005.

I. Shufrin and M. Eisenberger, Semi-analytical modeling of cutouts in rectangular plates with variable thickness -free vibration analysis, Appl Math Modell, vol.40, issue.15, pp.6983-7000, 2016.

P. Singhatanadgid and T. Singhanart, The kantorovich method applied to bending, buckling, vibration, and 3d stress analyses of plates: a literature review, Mech Adv Mater Struct, 2005.

P. Ladevèze, Nonlinear computational structural mechanics -new approaches and non-incremental methods of calculation, 1999.

F. Chinesta, A. Ammar, A. Leygue, and R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology, J Non-Newton Fluid Mech, vol.166, issue.11, pp.578-92, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01061441

F. Chinesta, A. Ammar, and E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Arch Comput Methods Eng, vol.17, issue.4, pp.327-50, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01007235

A. Ammar, B. Mokdada, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J Non, vol.139, pp.153-76, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004909

M. Savoia and J. Reddy, A variational approach to three-dimensional elasticity solutions of laminated composite plates, J Appl Mech ASME, vol.59, pp.166-75, 1992.

B. Bognet, F. Bordeu, F. Chinesta, A. Leygue, and A. Poitou, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput Methods Appl Mech Eng, vol.201, pp.1-12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01462825

P. Vidal, L. Gallimard, and O. Polit, Assessment of a composite beam finite element based on the proper generalized decomposition, Compos Struct, vol.94, issue.5, pp.1900-1910, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01366922

P. Vidal, L. Gallimard, and O. Polit, Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures, Int J Solids Struct, vol.50, pp.2239-50, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01366917

P. Vidal, L. Gallimard, and O. Polit, Shell finite element based on the proper generalized decomposition for the modeling of cylindrical composite structures, Comput. Struct, vol.132, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366963

A. Ammar and F. Chinesta, Circumventing the curse of dimensionality in the solution of highly multidimensional models encountered in quantum mechanics using meshfree finite sums decompositions, Lecture Notes Comput Sci Eng, vol.65, pp.1-17, 2006.

E. Cances, V. Ehrlacher, and T. Lelièvre, Greedy algorithms for high-dimensional eigenvalue problems, Constr Approx, vol.40, issue.3, pp.387-423, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00809855

E. Carrera, Developments, ideas and evaluations based upon the reissner's mixed theorem in the modeling of multilayered plates and shells, Appl Mech Rev, vol.54, pp.301-330, 2001.

M. D'ottavio, D. Ballhause, T. Wallmersperger, and B. Kröplin, Considerations on higherorder finite elements for multilayered plates based on a unified formulation, Comput Struct, vol.84, pp.1222-1257, 2006.

S. Kulkarni and S. Kapuria, Free vibration analysis of composite and sandwich plates using an improved discrete kirchhoff quadrilateral element based on third-order zigzag theory, Comput Mech, vol.42, issue.6, pp.803-827, 2008.

M. Rao, K. Scherbatiuk, Y. Desai, and A. Shah, Natural vibrations of laminated and sandwich plates, J Eng Mech ASCE, vol.130, pp.1268-78, 2004.

A. Noor, Free vibrations of multilayered composite plates, AIAA J, vol.11, pp.1038-1047, 1973.

T. Kant and K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos Struct, vol.53, pp.73-85, 2001.

W. Zhen, C. Wanji, and R. Xiaohui, An accurate higher-order theory and c0 finite element for free vibration analysis of laminated composite and sadwich plates, Compos Struct, vol.92, pp.1299-307, 2010.