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Abstract—We are interested in discovering expressions for
financial prediction using Nested Monte Carlo Search and Genetic
Programming. Both methods are applied to learn from financial
time series to generate non linear functions for market volatility
prediction. The input data, that is a series of daily prices of
European S&P500 index, is filtered and sampled in order to
improve the training process. Using some assessment metrics,
the best generated models given by both approaches for each
training sub sample, are evaluated and compared. Results show
that Nested Monte Carlo is able to generate better forecasting
models than Genetic Programming for the majority of learning
samples.

I. INTRODUCTION

Derivative markets provide market participants and policy-
makers working in the financial markets with a rich source of
information for gauging market sentiment. Option prices are
especially useful for extracting such information. Due to their
forward-looking nature, they efficiently encapsulate market
perceptions. The price of an option therefore depends on the
market opinion about the future volatility of the underlying
asset upon which the option is written. The volatility that
makes the theoretical option price equal to the observed
option price is called the implied volatility. It may contain
useful information about the market participant expectations
regarding the future volatility of the underlying asset. It
has been conjectured that the implied volatility is a good
predictor of the future volatility of the underlying asset [1].
This effectively makes volatility forecasting a big challenge
for many financial institutions around the word.

Traditional parametric methods have limited success in
estimating and forecasting the implied volatility as they are
dependent on restrictive assumptions and difficult to estimate.
Several machine learning techniques have been recently used
to overcome these difficulties. Genetic programming (GP) has
been often applied to forecast financial time series and recently,
it was successfully applied for the prediction of the implied
volatility [2], [3].

This paper investigates the application of a new meta-
heuristic for the implied volatility forecasting, that is the
Nested Monte Carlo Search, and compares it to Genetic
Programming.

Monte Carlo Tree Search (MCTS) is a general search
algorithm that made a breakthrough in computer Go [4]. The
978-1-4799-7560-0/15/$31 (©2015 IEEE

standard MCTS algorithm for multi-player games is Upper
Confidence bounds applied to Trees (UCT) [5]. A good MCTS
algorithm for single player games is Nested Monte Carlo
Search (NMCS) [6].

The principle of Monte Carlo Search algorithms is to play
a lot of random games in order to evaluate a state. A random
game is also called a playout. When using UCT the average
of the playouts that start with a move is used to select the
next move of the simulation. The key principle of UCT is to
balance exploration and exploitation. Exploitation favors the
moves with the greatest means while exploration favors the
moves that have not been tried much.

The principle of NMCS is different from the principle of
UCT. It still uses a lot of playouts in order to find good
sequences of moves but instead of using the average of the
playouts, it memorizes the best sequence of moves found so
far and follows it. It uses nested levels of search and tries
every possible moves once. Memorizing the best sequence
of moves enables it to intensify the search, while trying all
possible moves once enables it to diversify the search.

NMCS has been applied to puzzles such as SameGame
and Morpion Solitaire and to optimization problems. It has
found world records for difficult problems such as the Snake-
In-The-Box problem [7] or the Weak Schur problem [8]. In
order to find these records the random playout policy has been
replaced with a more informed policy that still includes some
randomness.

NMCS has also been applied to transportation problems
such as the Bus Regulation problem [9] or the Traveling
Salesman with Time Windows problem [10]. It has also been
used for software engineering so as to generate structured test
data with specific properties [11].

A related algorithm is Nested Rollout Policy Adaptation
(NRPA) that learns a playout policy online using nested levels
of learning [12]. NRPA has beaten human world records that
were standings for more than thirty years at Morpion Solitaire.
It has also been successfully applied to optimization problems
such as the Traveling Salesman with Time Windows problem
[13] and the Multiple Sequence Alignment problem [14].

The remainder of the paper is divided into six sections.
Section 2 gives a brief introduction to the symbolic regression
and its application to the prediction of the implied volatility in
finance. Section 3 describes the design of the Nested Monte
Carlo search. Section 4 reminds the basics of the Genetic



Regression. Section 5 and 6 report the experimental settings
and the results.

II. SYMBOLIC REGRESSION FOR VOLATILITY
FORECASTING

There are two approaches to generate volatility forecasts.
One is to extract information about the variance of future
returns from their history, the second is to elicit market
expectations about the future volatility from observed option
prices. The Black&Scholes(BS) [15] is the most commonly
used model in the second category. It uses a backward in-
duction technique to derive the implied volatility from a set
of observable data for an option contract. An option contract
is a derivative security that gives the holder the right to buy
(call) or to sell (put) the underlying asset by a certain date
for a certain price. The price in the contract is known as the
exercise price or strike price. The date in the contract is known
as the expiration date or maturity.

Whilst it is the most commonly used in financial markets,
the BS pricing model has some well-known deficiencies.
Indeed, it assumes that volatility is constant. However, it can
be easily shown empirically that the implied volatility is not
constant and changes with different option strike prices and
expiry dates. Black [15] suggested that the non-stationary
behavior of volatility could lead the BS model to over-price
or under-price options...

To overcome the BS deficiencies, several parametric
models have been introduced in financial engineering based
on the realized volatility. They can be classified into three
categories: models based on Past standard Deviations (such as
the Random walk model, the Simple Regression method, ...),
ARCH Class Conditional Volatility models (such as the well
known GARCH model family [16], [17]) and the stochastic
models (such as Monte Carlo models).

All these models are parametric models that need some
assumptions. However, as mentioned in [18], the volatility
forecasting approaches should be free of strong assumptions
and more flexible than parametric methods.

Recently, to provide a new issue for implied volatility
forecasting, several researchers have studied the application of
supervised machine learning techniques. The aim is to offer
explicit formulas which could compute directly the implied
volatility expressed as a function of option prices and other
observable variables.

The main objective of the supervised machine learning is to
draw a mapping between input and output values in a training
data set. The hope is that the resulting pattern (model) from
the mapping process be able to correctly predict unknown
examples of the same type.

In the case of learning regression models, the task is to
discover a target function f(X) that map a vector of real-
valued inputs X to real valued target variable Y. For financial
volatility forecasting, the input set X is a financial time series
data (X = Xy, Xio,..,Xin), and Y is the BS implied
volatility computed from the observed data. Each input Xy;
is a vector of variables for one observed option at the date ¢:.

The variables could be the strike price, the maturity, the call
or put price, ...

III. MONTE CARLO EXPRESSION DISCOVERY

Monte Carlo sampling can be used to generate expressions.
Expressions are seen as stacks of atoms with a maximum size.
At each step of a sample (also called a playout), a random atom
is chosen and added to the stack. In order to stop the playout
a maximum number of atoms are allowed in the stack. When
the number of atoms of the stack plus the number of open
branches is equal to the maximum, only leaves are added to
the stack so that when the stack is complete it contains less
than the maximum number of atoms.

Nested levels of Monte Carlo search can be used in order
to improve on random sampling [6]. The principle of NMCS is
to use different levels of search. At level zero it does a playout.
At greater levels it performs informed playouts. At each step
of a playout, it generates the possible moves and for each move
it does a level - 1 search. It keeps the move that is associated
to the best level - 1 search and plays it. It continues to choose
moves like this until the end of the informed playout.

Fig. 1. At each step of the principal playout shown here with a bold line,
a NMCS of level n performs a NMCS of level n — 1 (shown with wavy
lines) for each available move and selects the best one. At level 0, a simple
pseudo-random playout is used.

The figure 1 explains how a playout of level 1 uses playouts
to choose the moves to play.

Algorithm 1 Nested Monte-Carlo search

nested (position, level)
best playout < {}
while not terminal (position) do
if level = 1 then
move $— argmax,, (sample (play (position, m)))
else
move <— argmax,, (nested (play (position, m), level —
1)
end if
if score of playout after move > score of the best playout
then
best playout < playout after move
end if
position < play (position, move of the best playout)
end while
return score (position)

The NMCS algorithm is given in algorithm 1. For a playout
of level n it chooses the move that gives the best score when
followed by a playout of level n — 1. A search at level n calls
a search at level n — 1 to direct its search.

NMCS was applied with success to multiple expression
discovery problems [19], [20]:



e  The prime generating polynomial problem where the
goal is to discover a polynomial that generates as
many different primes in a row as possible. Cartesian
Genetic Programming has also been applied to the
problem of finding polynomials that generate prime
numbers [21].

e  The finite algebra problem where the goal is to find
a discriminator term for an algebra. The discriminator
term is a formula that gives special results for the
possible values of the variables of the algebra. Ge-
netic Programming has also been applied to finding a
discriminator term for finite algebras [22].

e  The parity problem which is a classical problem for
GP [23]. The goal is to find a formula that tells if
the number of bits of the input is odd or even. The
problem can be easy or difficult depending on the
atoms used to discover expressions and the size of
the input.

e  The N-prisoners puzzle. N prisoners wear a hat and
each prisoner can see the other’s hats but not his hat. A
hat is associated to either a zero or a one. All prisoners
are asked to find the color of their hat. They can
pass and give no answer. If all prisoners that have not
passed have found the right number for their hats, all
the prisoners are free, else they stay in prison. A basic
strategy is to have one prisoner randomly choosing its
answer. It wins 50 percent of the time. Much more
elaborate strategies exist. Genetic Programming has
also been applied to the N-prisoners puzzle [24].

e The MAX problem is to find an expression that
evaluates as great as possible with a limited expression
size. The authorized atoms are 0.5, + and *. In [25]
the limit was on the depth of the corresponding tree.
For NMCS the limit was on the number of atoms of
the generated expression, not on the depth of the tree.

e  The target number problem is derived from a popular
television game where the goal is to find a an ex-
pression that evaluates as close as possible to a target
number given the four basic operations as atoms as
well as a given set of predefined numbers.

A good property of NMCS for the generation of expres-
sions is that it uses a maximum expression size. It avoids a
problem of Genetic Programming called bloat which consists
in generating bigger and bigger expressions that are very
specific to the learning data and that hinder generalization of
the learned expression. Another good property of NMCS is that
it there is no parameter to tune except the maximum expression
size. Even without tuning it has outperformed optimized Ge-
netic Programming systems for the problems previously cited.
It is still possible to tune NMCS for a problem by improving
the playout policy. For most problems that were addressed with
NMCS, big improvements came from using rules during the
playouts so as to avoid bad moves. It could be possible to
do this for Nested Monte Carlo expression discovery, however
that would be a problem specific enhancement. In future work
we will consider domain specific playout policies.

For a problem of height h, the NMCS algorithm of level [
has a complexity of O(|branchingFactor|"h'*T1) [26].

IV. GENETIC REGRESSION

Genetic Programming, that is an offshoot of Genetic
Algorithms, is essentially applied to develop efficient
computer programs. For the implied volatility forecasting,
we used a variant of Genetic Programming called Genetic
Regression that implement the Symbolic Regression. This is a
numerical optimization tool to select a model which best fits
a time series. With Genetic Regression, the desired program
is a function that relates a set of inputs to one output. In our
case, the output is the implied volatility.

Genetic Regression was one of the earliest applications of
GP published by John Koza on 1992 [23], and has continued
to be widely studied. The GP system takes as input a set
of explanatory or lagged dependent variables (defined as
terminals in GP), and a set of mathematical operators (defined
as non-terminals in GP) and then randomly selects and
combines independent variables and operators in search for
a model specification that would satisfy some user-defined
fitness function. A GP solution (individual) is a symbolic
regression program able to generate predicted values of the
dependent variable. The individual possessing the lowest
predictive error is characterized as fittest and is kept in
memory.

Several works have applied the Genetic Regression for
financial times series mining. For example, for volatility fore-
casting, Chen and Yeh [27] have applied a recursive genetic
programming (RGP) approach to estimate volatility historical
returns of Nikkei 225 and S&P500 index. Zumbach and al. [28]
and Neely and Weller [29] have applied GP to forecast foreign
exchange rate volatility. Recently, Abdelmalek et al. [2] and
Ben Hamida et al. [3] have extended the studies mentioned
earlier by forecasting the implied volatility from the S&P500
index call options instead of historical volatility. For this work,
we use the same Genetic Regression implementation as in [2],

[3].

The steps necessary to implement the Genetic Regression
are summarized in algorithm 2.

Algorithm 2 Abstract Genetic Regression Algorithm

Randomly create an initial population of models
while termination condition not satisfied do
Evaluate the performance of each function according to
the fitness criterion
Select the best functions in the population using the
selection algorithm
Generate new individuals by crossover and mutation
end while
Report the best solution found

The starting GP population is generated using a ranked
half and half method [23]. This method involves generating
an equal number of trees using a pre-established maximum
depth. Based on the fitness criterion, the selection of the indi-
viduals for reproduction is done with the tournament selection
algorithm.

The main genetic operator involved in GP are:



e  Crossover: It create an offspring function by recom-
bining randomly chosen parts from two selected parent
functions.

e  Mutation: Different mutation operators are used.
Point mutation operator consists of replacing a single
node in a tree with another randomly-generated node
of the same arity. Branch mutation operator randomly
selects an internal node in the tree, and then it replaces
the sub-tree rooted at that node with a new randomly-
generated sub-tree. Expansion mutation operator ran-
domly selects a terminal node in the tree, and then
replaces it with a new randomly-generated sub-tree.
Each mutation is applied with a rate given in the GP
parameters (table II).

The method of replacing parents for the next generation is
comma replacement strategy, which selects the best offspring
to replace the parents. It assumes that offspring size is higher
than parents’ size. The stopping criterion is the maximum
number of generations (table II).

To run a Genetic Regression system, four ingredients need
to be specified: the terminal set, the function set, the fitness
measure and the GP parameters. Definition and details of these
ingredient are given in the section V.

V. EXPERIMENTS
A. Learning Data

Data used to perform our empirical analysis are daily prices
of European S&P500 index call options, from the CBOE for
the sample period January 02, 2003 to August 29, 2003.
S&P500 index options are among the most actively traded
financial derivatives in the world.

Figure 2 illustrates the evolution of the mean values
of the S&P500 index implied volatility computed with the
Black&Scholes formula [15].
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Fig. 2. Curve of the B&S Implied Volatility mean values of the S&P500
from January 02, 2003 to August 29, 2003

When using the symbolic regression technique, developers
and users of learning meta-heuristics believe that a small sam-
ple size is usually sufficient, especially with GP. Thus, the full
input sample is sorted by time series and divided chronolog-
ically into nine successive sub-samples (S, Sa,---,Sg) each
containing 667 daily observations. These samples will be used
simultaneously for training and test steps. Note that the training
set is the data sub-sample on which the program operates
to determine the relationship between input parameters and
output, and the test set is the data sub-sample on which the
resulting formula is tested.

If a sub-sample S; is used as a training set, then the sub-
sample of the the immediately following date S; 1 (S7 if i =
9) is used as test set.

B. Settings

Both GP and NMCS used the same terminal and function
sets to generate and evolve the tree based models. The terminal
set includes input variables: the call option price divided by
strike price C'/ K, the index price divided by strike price S/ K
and time to maturity 7 (table I). The function set includes
basic mathematical operators, such as arithmetic operators, and
Black&Scholes components such as the normal cumulative
distribution function (Nc¢fd) [15], which may be useful for
implied volatility models (table I).

Function (node) set
+ Addition
- Subtraction
* Multiplication
% Protected Division
In Protected Natural Log
Exp Exponential function
Sqrt Protected Square Root
cos Cosinus
sin Sinus
Ncfd | Normal cumulative distribution
Terminal set
C/K Call Price/Strike Price
S/K Index Price/Strike Price
Time to Maturity

-
TABLE 1. TERMINAL AND F FUNCTION FOR NMCS AND GP TREES.

1) NMCS parameter: There is only one NMCS parameter
which is the maximum number of nodes in a tree representing
an expression. We used a maximum of 40 nodes.

2) GP parameters: The implementation of genetic pro-
gramming involves different parameters that determine its
efficiency. A common approach in tuning GP is to undertake a
series of trial to make parameter choices for the final GP runs.
We used this approach to determine some parameters such as
the crossover and mutation probabilities.

The final design of GP parameters used in this work is
summarized in Table II.

Population size 100
Offspring size 200
Maximum number of generations 500
Maximum depth of new individual 6
Maximum depth of the tree 17
Tournament size 4
Crossover probability 0.6
Mutation :
Branch mutation 0.2
Point mutation 0.1
Expansion mutation 0.1
TABLE II. GP PARAMETERS.

C. Evaluation metrics

Each formula given by NMCS or GP is evaluated to test
whether it can accurately forecast the output value (implied
volatility) for all entries in the training set. To assign a fitness
measure to a given solution, we compute the Mean Squared
Error (MSE) between the estimated volatility (y;) and the
target volatility (y;):

1
1 ~N\2
MSE =+ XN}% ~ i)



where N is the number of entries in the training data
sample.

Beside the (MSE), we used another measure to evaluate
the training accuracy and the generalization ability of the
obtained models. This measure is the percentage of Poor
Fitted Observations (PFO). It compute the proportion of input
entries where the gap between the estimated and the target
values is greater than a given level (I).

When using mining techniques in the field of automatic
learning, two difficulties are often encountered: the over-fitting
and the under-fitting. Over-fitting happens when the data is
learned by rote and when the learned expression does not
generalize past the learned data. Under fitting is encountered
when the regression model does not fit correctly a part of the
learning data, and the forecasting error of the corresponding
cases is relatively high. The predictive ability of the model
is then not satisfactory, mainly for finance prediction. So it
is necessary to introduce an other metric able to detect these
case more effectively than the mean square error. The PFO is
then introduced in this purpose and is computed as follows.

otherwise

PFO:(Zzi)/N;zi:{ (1)

=1

. Ui — Yi
i) = ; 2
fe(yi) = | m | 2)

where N is the size of the input data and [ is the maximum
forecasting error level allowing for the prediction of one
observation X;.

The PFO value is used to estimate the percentage of
variables in the input data that a given formula was unable to
forecast without exceeding a fixed maximum error margin that
could be accepted in the prediction. It is related to the closeness
of the forecasted values against the target ones. The lower the
values obtained by this metric, the better is the forecasting
technique.

VI. RESULTS AND DISCUSSION

For the comparative study, a set of eighteen generated mod-
els is constructed. It contains the NMCS and GP best solutions
for each training sub-sample (57, -, S9), selected according
to the test M SE. Obtained models are noted M Ny, - -- M Ny
for NMCS and MGy, -, MGy for GP as described in the
following table.

Subsample St So EE So
NMCS model || MN: | MNy | --- | MNy
GP model MG, | MGs MGy

To compare both forecasting and generalization ability of
each model, the MSE according to the whole input data ("MSE
Total”) is computed for each best solution given by NMCS
and GP using each sub-sample in the learning set. Results are

shown in figure 3. It can be observed from this figure that the
forecasting performance of all models is quite similar, except
for the three first models. Indeed, training on the three first sub-
samples 51, S2 and S3 don’t give solutions with high accuracy,
and this is for both methods.

Otherwise, a comparison of the "MSE Total” of the two
methods shows that NMCS is little better than GP, except for
patterns obtained with the training set S§.

0.006

m NMCS Total MSE
0.005
® GP Total MSE

0.004

0.003
0.002
0.001 ‘ I l I
0
S1 S2 S3 sS4 S5 S6 S7 S8 S9

Fig. 3. Performance of the generated NMC and GP volatility models
according to "MSE total”

Most of the models given by the two methods have a
similar (and good) performance according to the MSE metric.
It is therefore interesting to see if they present the same
performance according to the PFO metric. Figure 4 and 5
illustrates these results for two maximum error levels:l = 0.5
and [ = 0.3.

Error level = 0.5
35.00%
30.00%
= NMCS PFO

9
2500% uGP PFO
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5.00% ‘
0.00% - e e e B oW

s1  s2 S3  s4 S5 s6 S7 S8  S9

Fig. 4.  Performance of the generated NMC and GP volatility models
according to the PFO percentage for [ = 0.5.

Error level = 0.3
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Fig. 5. Performance of the generated NMC and GP volatility models
according to the PFO percentage for [ = 0.3.

The figures 3, 4 and 5 show clearly that the NMCS out-
perform the GP for the volatility forecasting problem. Indeed,



all MSE Total and PFO percentage values of NMCS models
are lower than those of GP models, except for the models
corresponding to the sub-sample Ss.

It appears also, through the figures 4 and 5, that the MSE
metric is not sufficient to compare in detail the generated
models. Some solutions might have very low MSE, but
they present a poor performance when a high precision for
the prediction step is required, which is the case generally
in finance. For example, the model MNI presents high
performance according to the MSE Total and it seems better
than the model MN7. However, its PFO percentage for both
levels | = 0.5 and | = 0.3 is much higher than that of MN7.
In this case, for more accurate prediction, MN7 is preferred
to MNI1.

For a complete comparative study between NMCS and GP,
the PFO percentage for all generated models are computed
according to different maximum error levels (/) varying from
0.3 to 1. These values are illustrated in Figure 6. It is clear
that the percentages of PFO according to the enlarged data
sample are lower for the NMCS models than GP models for
all values of [ in the e interval test. We can already make a first
conclusion that the learning capacity of NMCS from financial
time series is better than that of GP.

60.00%

50.00%

== GP
40.00%

=@=NMCS

30.00%

20.00%

PFO Average over (S1...59)

10.00%

0.00%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Error level

Fig. 6.
1.

Evolution of the total PFO percentage for [ = varying from 0.3 to

For a more detailed comparative study, only four models
are selected: the two NMCS best models and the two GP best
models according to the MSE Total and the PFO percentage.
The selected models are given in table III with their corre-
sponding "MSE Total”.

Model MN, M N7 MGy MG~
| MSE Total [[ 0.000905 | 0.001702 | 0.001444 [ 0.0019 |
TABLE III. "MSE TOTAL” OF THE FOUR BEST MODELS GIVEN BY
BOTH METHODS NMCS AND GP.

The performance of the four best models is compared
against three criteria:

1)  PFE percentage computed according to three different
maximum error levels (0.3, 0.4 and 0.5);

2)  Shape of the forecasting error of all observations
(options) in the input data;

3)  Number of PFO in each sub-samples for the three
levels 0.3, 0.4 and 0.5.

The figure 7 shows PFO percentage for the first comparison
criterion. Since the selected models are the best given by
the two methods, their prediction accuracy are quite similar,
specially MN4 and MG4.

PFO percentage

Hlevel 0.5% Hlevel 0.4% Wlevel 0.3%
17.56%

12.13%

8.20%

333% 3.069
46
1.17%87% 4,449 123% g
0.57% 056
e — e —
MN4 MN7 MGa

MG7

Fig. 7. Variation of the PFO percentage of the four best generated NMC and
GP volatility models for a maximum error level equal to 0.3, 0.4 and 0.5.

For the second comparison criterion, we have represented
in figure 8 the pattern of the forecasting errors of the retained
models. Each point represents the squared error in implied
volatility units for one option (observation) in the data set.
More monotonous the squared error pattern is, more accurate
the corresponding model is. It is therefore clear that the
dispersion of the squared errors given by the models MN7 and
MGT7 presents more inhomogeneity than that of the models
MN4 and MG4. They have some difficulties in forecasting
options which observed date is far from the training options’
dates. This observation could be confirmed by the figures 9,
10 and 11.

4 MSE MN4  BMSE MN7

MSE MG4 MSE MG7

Forecasting error (MSE)

0 1000 2000 3000 4000 5000 6000

Input observations

Fig. 8. Pattern of the forecasting errors of the models M N4, M N7, MGa4
and M G7. Each point represents the squared error in implied volatility units
for one option (observation) in the data set.

The detailed comparison of the best models showed that
the model MN4 given by NMCS is the more accurate for the
volatility forecasting. The MG4 could also be considered as

an accurate model, but with a little less performance than the
MN4.

The formula of the best model MG4 is:

MG4 = exp l(ln(qﬁ(f{)) XA[T—2X % + %) — cos(%)

@3

A detailed examination of the formula for MG4 shows that
the implied volatility is function of all the inputs used, namely



Number of PFO in each sub-sample
for level = 0.5
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Fig. 9. Variation of the PFO values of the four best generated NMC and GP
volatility models computed for each sub-sample with [ = 0.5.
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Fig. 10. Variation of the PFO values of the four best generated NMC and
GP volatility models computed for each sub-sample with [ = 0.4.
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Fig. 11. Variation of the PFO values of the four best generated NMC and
GP volatility models computed for each sub-sample with [ = 0.3.

the option price divided by strike price (% for calls and % for
puts), the index price divided by strike price (%)and time to
maturity (7). The implied volatility generated for calls and puts
cannot be negative since they are computed using the square
root and the normal cumulative distribution functions as the
root nodes.

A. Discussion

Both GP and NMCS were able to give accurate predictions
of the implied volatility. However, the "MSE Total” plot
suggest that NMCS seems to produce slightly less error than
GP. Indeed, the total MSE is higher for GP models than for
NMCS models, excepted for M Gg. According to the total
MSE, the model built using NMCS method outperforms the
model built using GP.

However, to select a model for prediction, the analysis
should be related to efficiency, generalization, stability, and
prediction ability of all models. Thus, models are compared
also according to the PFO values. This comparison shows that
the PFO scores are better for NMCS than for GP.

Another interesting aspect between GP and NMCS regres-
sion is related to the trained model generalization capabilities.
As we have stated before, the purpose of a forecasting model
is to capture important features of real phenomena in order
to perform a good prediction about its future behavior. In this
sense, models are compared according to the second evaluation
metric, that is the PFO. According to this criteria, NMCS could
generalize with higher efficacy than GP should we use this
measure during the learning phase.

Otherwise, regardless the good quality of the models ob-
tained by the two methods, the use of NMCS for the implied
volatility forecasting was simpler and faster than the use of
Genetic Programming. Indeed, the latter requires a phase of
parameter adjustment. This step is not needed with NMCS.
One must note that a choice of unsuitable values for GP
parameters could have a negative effect on the quality of the
results. This risk does not exist with NMCS.

VII. CONCLUSION

In this paper Nested Monte Carlo Search is applied to
the volatility forecasting problem and compared to Genetic
Programming.

Results presented show that NMCS excels in the volatility
forecasting and outperforms Genetic Programming for this
task. It could generate efficient models with high prediction
ability. However, model evaluation can also use measures
other than the Mean Squared Error. Using the Poor Fitted
Observations measure on expressions learned with the Mean
Squared Error fitness function, NMCS gives better results than
GP.

The ability of NMCS to avoid over-fitting by limiting the
size of a learnt expression is a key factor for improving its
generalization ability over GP. Moreover it is a simple and
parameter free method that gives good results.

In future work we will apply NMCS to other problems in
finance and economy and improve it so as to cope with large
amounts of data. We will also investigate the use of playout
policies for expression discovery in order to improve even
more the effectiveness of NMCS. Furthermore, the method will
be compared, besides the GP, with the classic Black&Scholes
method.
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