E. Barndorff-nielsen-ole, Information and exponential families in statistical theory, 2014.

J. Bertoin, Lévy Processes, 1998.

R. Bhattacharya and R. Rao, Normal approximation and asymptotic expansions, p.64, 1976.

P. Billingsley, Convergence of probability measures, Wiley Series in Probability and Statistics : Probability and Statistics, 1999.

K. A. Borovkov, A functional form of the Erdös-Rényi law of large numbers, Theory Probab. Appl, vol.35, issue.4, pp.762-766, 1990.

H. Cramer, Sur un nouveau theoreme limite de la theorie des probabilites. Colloquium on Theory of Probability, 1937.

P. Deheuvels, Functional Erdös-Rényi laws, Studia Scientiarum Mathematicarum Hungarica, vol.26, pp.261-295, 1991.

P. Deheuvels, Topics on empicial processes, EMS, pp.93-190, 2007.

P. Deheuvels and D. Mason, Random fractals generated by oscillations of processes with stationary and independent increments, Probability in Banach Spaces, vol.9, 1993.

P. Deheuvels and J. Steinebach, Erdös-Rényi-Type Functional Limit Laws for Renewal Processes. High dimensional probability VII, Prog. probab, vol.71, pp.219-254, 2016.

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 1993.

A. Dembo and O. Zeitouni, Refinements of the Gibbs conditioning principle, Probab. Theory Related Fields, vol.104, issue.1, pp.1-14, 1996.

P. Diaconis and D. A. Freedman, A dozen of de Finetti-style results in search of a theory, vol.23, pp.397-423, 1987.

P. Diaconis and D. A. Freedman, Conditional limit theorems for exponential families and finite versions of de Finetti's theorem, J. Theoret. Probab, vol.1, issue.4, pp.381-410, 1988.

P. Erd?s and A. Rényi, On a new law of large numbers, J. Analyse Math, vol.23, pp.103-111, 1970.

D. A. Freedman, Markov Chains, 1983.

A. N. Frolov, Unified limit theorems for increments of processes with independent increments, Theory Probab. Appl, vol.49, issue.3, pp.531-540, 2008.

G. Hognas, Characterization of weak convergence of signed measures on, 1977.

. Math and . Scand, , vol.41, pp.175-184

J. L. Jensen, Saddlepoint Approximations. Oxford Statistical Science Series, p.16, 1995.

A. I. Khinchin, Mathematical foundations of statistical mechanics, 1949.

J. D. Lynch and J. Sethuraman, Large deviations for processes with independent increments, Ann. Probab, vol.15, pp.610-627, 1987.

V. V. Petrov, Sums of independent random variables, 1975.

G. Sanchis, A functional limit theorem for Erdös and Rényi's law of large numbers, Probab. Theory Relat. Fields, vol.98, pp.1-5, 1994.

, Addendum -A functional limit theorem for Erdös and Rényi's law of large numbers, p.475

P. Revesz, A generalization of Strassen's functional law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete, vol.50, pp.257-264, 1979.

V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol.3, pp.211-226, 1964.

D. W. Stroock, Probability Theory : An Analytic View, 1994.

D. W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states, and the equivalence of ensembles, Festchrift in honor of F. Spitzer, pp.399-424, 1991.

S. R. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math, vol.19, pp.261-286, 1966.